Уточнить поиск
Результаты 1-10 из 101
A sequential utilization of the UV-A (365 nm) fluence rate for disinfection of water, contaminated with Legionella pneumophila and Legionelladumoffii
2022
Allahyari, Elaheh | Carraturo, Federica | De Risi, Arianna | Nappo, Antonio | Morelli, Michela | Cajora, Alessia | Guida, Marco
Legionella species are the etiological agent of Legionnaires' disease, a pathology easily contracted from water circuits and by the inhalation of aerosol droplets. This bacterium mainly proliferates in water: Legionella pneumophila is the most commonly isolated specie in water environments and consequently in water system, although further Legionella species have frequently been isolated, including Legionella dumoffii. The simultaneous presence of the two species in the water system can therefore lead to the simultaneous infection of several people, giving rise to harmful outbreaks. Ultraviolet inactivation of waterborne microorganisms offers a rapid and effective treatment technique and recently is getting more attention mostly to eliminate unsafe level of contamination. To tackle the issue, the inactivation of the two species of Legionella spp., namely L. pneumophila and L. dumoffii, by means of UV-A light emitting diodes (UV-A LED) system is explored. We used a commercially available UV-A LED at 365 nm wavelength, and the UV-A dose is given incrementally to the Legionellae with a concentration of 10⁶ CFU/mL in 0.9% NaCl (aq) solution. In this study, with a UV-A-dose of 1700 mJ/cm², the log-reduction of 3-log (99.9% inactivation) for L. pneumophila and 2.1-log (99.1% inactivation) for L. dumoffii of the contaminated water are achieved. The Electrical Energy per Order (EEO) is evaluated and showed this system is more economic and efficient in comparison with UV-C and UV-B LEDs. Following the support of this preliminary study with additional tests, aiming to validate the technology, we expect this device may be installed in water plants such as cooling systems or any water purification station in either industrial or home scales to reduce the risk of this infectious disease, preventing consumers' health.
Показать больше [+] Меньше [-]Electrochemical oxidation of the polycyclic aromatic hydrocarbons in polluted concrete of the residential buildings
2017
Aćimović, Danka D. | Karić, Slavko D. | Nikolić, Željka M. | Brdarić, Tanja P. | Tasić, Gvozden S. | Marčeta Kaninski, Milica P. | Nikolić, Vladimir M.
Polycyclic aromatic hydrocarbons (PAH) have been listed by the United States Environmental Protection Agency (US EPA) and by the European Community as priority environmental pollutants. The removal of PAHs from soils, sediments and waste water has attracted attention of scientists and engineers for several decades. Electrochemical oxidation of PAH compounds in water, is receiving increasing attention, due to its convenience and simplicity. In this study we performed electrochemical oxidation of 16 EPA PAHs mixture in 10% NaCl aqueous solution in potentiostatic conditions, at voltage 1 V. Decrease of concentration of some individual PAHs, up to 70% referred to their starting concentration, after 60 min of electrolysis, was confirmed by UPLC/PDA analysis. In further work investigation was extrapolated to in situ removal of PAHs from concrete, as the medium where, to our knowledge, such way of PAH removal has not been investigated before.High concentrations of PAH contamination occurred in the concrete structure of the residential buildings in Belgrade in 2014. Application of DC voltage of 50 V between nickel and stainless steel electrodes packed in the concrete wall, moisturized with the 10% NaCl solution, led to considerable removal of the pollutants by oxidation process throughout the concrete.
Показать больше [+] Меньше [-]Up in smoke: California's greenhouse gas reductions could be wiped out by 2020 wildfires
2022
Jerrett, Michael | Jina, Amir S. | Marlier, Miriam E.
In this short communication, we estimate that California's wildfire carbon dioxide equivalent (CO₂e) emissions from 2020 are approximately two times higher than California's total greenhouse gas (GHG) emission reductions since 2003. Without considering future vegetation regrowth, CO₂e emissions from the 2020 wildfires could be the second most important source in the state above either industry or electrical power generation. Regrowth may partly of fully occur over a long period, but due to exigencies of the climate crisis most of the regrowth will not occur quickly enough to avert greater than 1.5 degrees of warming. Global monetized damages caused by CO₂e from in 2020 wildfire emissions amount to some $7.1 billion USD. Our analysis suggests that significant societal benefits could accrue from larger investments in improved forest management and stricter controls on new development in fire-prone areas at the wildland-urban interface.
Показать больше [+] Меньше [-]Antibiotics degradation by UV/chlor(am)ine advanced oxidation processes: A comprehensive review
2022
Lu, Zedong | Ling, Yanchen | Sun, Wenjun | Liu, Chaoran | Mao, Ted | Ao, Xiuwei | Huang, Tianyin
Antibiotics are emerging contaminants in aquatic environments which pose serious risks to the ecological environment and human health. Advanced oxidation processes (AOPs) based on ultraviolet (UV) light have good application prospects for antibiotic degradation. As new and developing UV-AOPs, UV/chlorine and derived UV/chloramine processes have attracted increasing attention due to the production of highly reactive radicals (e.g., hydroxyl radical, reactive chlorine species, and reactive nitrogen species) and also because they can provide long-lasting disinfection. In this review, the main reaction pathways of radicals formed during the UV/chlor (am)ine process are proposed. The degradation efficiency, influencing factors, generation of disinfection by-products (DBPs), and changes in toxicity that occur during antibiotic degradation by UV/chlor (am)ine are reviewed. Based on the statistics and analysis of published results, the effects caused by energy consumption, defined as electrical energy per order (EE/O), increase in the following order: UV/chlorine < UV/peroxydisulfate (PDS)< UV/H₂O₂ < UV/persulfate (PS) < 265 nm and 285 nm UV-LED/chlorine (EE/O). Some inherent problems that affect the UV/chlor (am)ine processes and prospects for future research are proposed. The use of UV/chlor (am)ine AOPs is a rich field of research and has promising future applications, and this review provides a theoretical basis for that.
Показать больше [+] Меньше [-]Numerical evaluation of the use of granulated coal ash to reduce an oxygen-deficient water mass
2016
Yamamoto, Hironori | Yamamoto, Tamiji | Mito, Yugo | Asaoka, Satoshi
Granulated coal ash (GCA), which is a by-product of coal thermal electric power stations, effectively decreases phosphate and hydrogen sulfide (H2S) concentrations in the pore water of coastal marine sediments. In this study, we developed a pelagic–benthic coupled ecosystem model to evaluate the effectiveness of GCA for diminishing the oxygen-deficient water mass formed in coastal bottom water of Hiroshima Bay in Japan. Numerical experiments revealed the application of GCA was effective for reducing the oxygen-deficient water masses, showing alleviation of the DO depletion in summer increased by 0.4–3mgl−1. The effect of H2S adsorption onto the GCA lasted for 5.25years in the case in which GCA was mixed with the sediment in a volume ratio of 1:1. The application of this new GCA-based environmental restoration technique could also make a substantial contribution to form a recycling-oriented society.
Показать больше [+] Меньше [-]A pilot study on remediation of sediments enriched by oyster farming wastes using granulated coal ash
2015
Yamamoto, T. | Kim, K.H. | Shirono, K.
In order to evaluate the ability of granulated coal ash (GCA), a byproduct of coal thermal electric power stations, to remove hydrogen sulfide from organically enriched sediments, a pilot study was carried out at oyster farming sites, where sediments were enriched with oyster feces and dead oysters. Concentration of hydrogen sulfide in the interstitial water of the sediment decreased to nearly zero in both experimental sites, whereas it remained over 0.2mg/l in the control site. Concentration of acid volatile sulfide (AVS) in the sediment also decreased significantly in both experimental sites, while remained over 0.4mg/g in the control site. Increases were observed in both the number of benthic microalgae species and the individual number of benthic animals in the surface sediments. This may have been due to the decrease in hydrogen sulfide.
Показать больше [+] Меньше [-]Estimation of hydrogen sulfide removal efficiency with granulated coal ash applied to eutrophic marine sediment using a simplified simulation model
2015
Asaoka, Satoshi | Yamamoto, Tamiji | Yamamoto, Hironori | Okamura, Hideo | Hino, Kazutoshi | Nakamoto, Kenji | Saito, Tadashi
Hydrogen sulfide generated in eutrophic marine sediment is harmful for living organisms. It is therefore necessary to remove hydrogen sulfide from the sediment to restore benthic ecosystems. Previous studies revealed that granulated coal ash, which is a by-product of coal thermal electric power stations, could remove and oxidize hydrogen sulfide. In this study, we propose a simplified simulation model to estimate the hydrogen sulfide removal efficiency of granulated coal ash. Hydrogen sulfide concentrations in eutrophic marine sediment pore water with and without the application of granulated coal ash were calculated by the proposed model, and the outputs were compared with semi-field or field observation data. The model outputs reproduced the observed data well. Using the proposed model outputs, we suggest an optimum application dosage of granulated coal ash for remediating eutrophic marine sediment.
Показать больше [+] Меньше [-]Synthesis of novel hierarchical micro/nanostructures AlOOH/AlFe and their application for As(V) removal
2022
Svarovskaya, Natalia | Bakina, Olga | Glazkova, Elena | Rodkevich, Nikolay | Lerner, Marat | Vornakova, Ekaterina | Chzhou, Valeria | Naumova, Li︠u︡dmila
Hierarchical micro/nanostructured composites, which contain iron and/or its (hydr)oxides, demonstrate high rate and capacity of arsenic adsorption. The main objective of this paper is the use of novel low toxicity AlOOH/AlFe hierarchical micro/nanostructures for arsenic removal. AlOOH/AlFe composite was obtained by simple water oxidation in mild conditions using AlFe bimetallic nanopowder as a precursor. AlFe bimetallic nanopowder was produced by electrical explosive of two twisted wires in argon atmosphere. The productivity of the electrical explosion assembly was 50 g/h, with the consumption of the electrical energy was 75 kW·h/kg. AlFe bimetallic nanoparticles were chemically active and interacted with water at 60 °C. This nanocomposite AlOOH/AlFe is low cost and adsorbs more than 200 mg/g As(V) from its aqueous solution. AlOOH/AlFe composite has flower-like morphology and specific surface area 247.1 m²/g. The phase composition of nanostructures is present AlOOH boehmite and AlFe intermetallic compound. AlOOH/AlFe composite was not previously used for this. The flower-shape AlOOH morphology not only facilitated deliverability, but increased the As(V) sorption capacity by up to 200 mg/g. The adsorption kinetics has been found to be described by a pseudo-second-order equation of Lagergren and Weber-Morris models while the experimental adsorption isotherm is closest to the Freundlich model. This indicates the energy heterogeneity of the adsorbent surface and multilayer adsorption. The use of non-toxic nanostructures opens up new options to treat water affected by arsenic pollution.
Показать больше [+] Меньше [-]A comprehensive method to prevent top-coal spontaneous combustion utilizing dry ice as a fire extinguishing medium: test apparatus development and field application
2022
Qin, Yueping | Guo, Wenjie | Xu, Hao | Song, Yipeng | Chen, Youqiang | Ma, Liwei
There is a high potential for coal spontaneous combustion (CSC) above the roof beams of supports during the mining-stopped period. Early detection of temperature abnormal zones and corresponding measures are necessary to prevent CSC. In this work, a top-coal temperature measurement method was proposed, combining the coal surface temperature detection and the drilling temperature observation. Furthermore, an apparatus was developed that dramatically increases the rate of dry ice sublimation, resulting in the rapid release of cryogenic carbon dioxide gas. The device utilizes water from firefighting pipes in underground coal mines as a heat source for dry ice sublimation without electrical energy and has been applied and validated taking Silaogou Coal Mine in China as a field test site. Specifically, we found that during the stoppage period, the coal above the supports near the air inlet tunnel is more likely to appear hot spots; the carbon dioxide gas generated by the dry ice phase change device can quickly reduce the hot spots temperature, and the coal temperature does not rebound after the gas injection is stopped. Based on the above analysis, this work can effectively prevent the early top-coal spontaneous combustion during the stop mining period.
Показать больше [+] Меньше [-]Performance of an electrocoagulation-flotation system in the treatment of domestic wastewater for urban reuse
2022
Bracher, Gustavo Holz | Carissimi, Elvis | Wolff, Delmira Beatriz | Glusczak, Andressa Gabriela | Graepin, Cristiane
Domestic wastewater is an important alternative source of water in the face of a growing discrepancy between water availability and demand. The use of techniques that enable the urban reuse of treated sewage is essential to make cities more sustainable and resilient to water scarcity. The main goal of this study was to evaluate the performance of an electrocoagulation-flotation system in the treatment of domestic wastewater for urban reuse. The study was performed using raw domestic wastewater samples. The electrocoagulation-flotation system was a cylindrical reactor with aluminum electrodes. The treatment conditions involved agitation at 262.5 rpm, electrical current of 1.65 A, electrolysis time of 25 min, an initial pH of 6, and inter-electrode distance of 1 cm. Overall, the electrocoagulation-flotation system was highly efficient for removal of apparent color (97.9%), chemical oxygen demand (82.9%), turbidity (95.8%), and orthophosphate phosphorous (> 98.2%). The electrocoagulation-flotation system had a consumption of electrical energy ranging from 9.5 to 13.3 kWh m⁻³, electrode mass from 294.7 to 557.0 g m⁻³, and hydrochloric acid from 4.3 to 6.6 L m⁻³. Sludge production in the system ranged from 1,125.7 to 1,835.7 g m⁻³. Treated wastewater had a satisfactory quality for several urban reuse activities. The electrocoagulation-flotation system showed potential to be used for domestic wastewater treatment for urban reuse purposes.
Показать больше [+] Меньше [-]