Уточнить поиск
Результаты 1-8 из 8
Neuromuscular, retinal, and reproductive impact of low-dose polystyrene microplastics on Drosophila
2022
Liu, Hsin-Ping | Cheng, Jack | Chen, Mei-Ying | Chuang, Tsai-Ni | Dong, Jhou-Ciang | Liu, Chuan-Hsiu | Lin, Wei-Yong
Facing the challenge of global microplastics (MPs) pollution, full characterization of MPs biohazards is urgent. Recent intensive studies revealed that the toxicity depends on the material, size, and exposure concentration of MP. To better elucidate MPs biohazards, we investigated the impact of polystyrene-MPs of size 0.1 μm at a low dose of 50 μg/L on the neuromuscular, retinal, and reproductive phenotypes of fruit fly model, by voltage-clamped electrophysiology, electroretinogram, and reproductive assay, respectively. We found that MPs decreased the frequency of spontaneous junction currents of synapse and altered the receptor potential amplitude of the retina. Furthermore, MPs lowered the rate of embryo-laying of fruit flies. The differential gene expression of ligand-receptor interaction, endocytosis, phototransduction, and Toll/Imd signaling pathways might underlie these MPs-induced phenotypes. These findings call for further investigation on the potential biohazards of low-dose MPs.
Показать больше [+] Меньше [-]DEHP toxicity on vision, neuromuscular junction, and courtship behaviors of Drosophila
2018
Chen, Mei-Ying | Liu, Hsin-Ping | Liu, Chuan-Hsiu | Cheng, Jack | Chang, Meng-Shiun | Chiang, Su-Yin | Liao, Wing-Ping | Lin, Wei-Yong
Bis(2-ethylhexyl) phthalate (DEHP) is the most common plasticizer. Previous studies have shown DEHP treatment accelerates neurological degeneration, suggesting that DEHP may impact retinal sensitivity to light, neurotransmission, and copulation behaviors. Although its neurotoxicity and antifertility properties have been studied, whether DEHP exposure disrupts vision and how DEHP influences neuromuscular junction (NMJ) have not been reported yet. Moreover, the impact of DEHP on insect courtship behavior is still elusive. Fruit flies (Drosophila melanogaster) were treated with series concentrations of DEHP and observed for lifespan, motor function, electroretinogram (ERG), electrophysiology of neuromuscular junction (NMJ), courtship behaviors, and relevant gene expression. Our results confirmed the DEHP toxicity on lifespan and capacity of motor function and updated its effect on copulation behaviors. Additionally, we report for the first time that DEHP exposure may harm vision by affecting the synaptic signaling between the photoreceptor and the laminar neurons. Further, DEHP treatment altered both spontaneous and evoked neurotransmission properties. Noteworthy, the effect of DEHP exposure on the copulation behavior is sex-dependent, and we proposed potential mechanisms for future investigation.
Показать больше [+] Меньше [-]The role of NLRP3 in lead-induced neuroinflammation and possible underlying mechanism
2021
Su, Peng | Wang, Diya | Cao, Zipeng | Chen, Jingyuan | Zhang, Jianbin
Neuroinflammation induced by lead exposure (Pb) is a major cause of neurotoxicity of Pb in the central nervous system (CNS). The NLR family, domain of pyrin containing 3 (NLRP3) involves in various neurological diseases, while the question of whether NLRP3 plays a role in lead-induced neuroinflammation has not yet been reported.Developmental and knockout (KO) NLRP3 mice were used to establish two in vivo models, and BV2 cells were used to establish an in vitro model. Behavioral and electrophysiologic tests were used to assess the neurotoxicity of Pb, and immunofluorescence staining was used to assess neuroinflammation. Real-time PCR and western blot were performed to examine the mRNA and protein levels of inflammatory cytokines and NLRP3 inflammasomes. siRNA technology was used to block NLRP3 expression.Pb exposure led to neural injure and microglial activation in the hippocampus region, while minocycline intervention attenuated Pb-induced neurotoxicity by inhibiting neuroinflammation. Pb increased the expression of NLRP3 and promoted cleavage of caspase-1 in mRNA and protein levels, and minocycline partially reversed the effects of Pb on NLRP3 inflammasomes. Blocking of NLRP3 by KO mice or siRNA attenuated neural alterations induced by Pb, weakened microglial activation in vivo and in vitro as well, without affecting the accumulation of Pb. Pb increased autophagic protein levels and phosphorylation of NF-κB, while suppressing autophagy or NF-κB inhibited Pb's effects on NLRP3.NLRP3 is involved in the regulation of Pb-induced neurotoxicity. These findings expand mechanism research of Pb neurotoxicity and may help establish new prevention strategies for Pb neurotoxicity.
Показать больше [+] Меньше [-]Trans-epithelial potential (TEP) response as an indicator of major ion toxicity in rainbow trout and goldfish exposed to 10 different salts in ion-poor water
2021
Po, Beverly H.K. | Wood, Chris M.
Freshwater ecosystems are facing increasing contamination by major ions. The Multi-Ion Toxicity (MIT) model, a new tool for risk assessment and regulation, predicts major ion toxicity to aquatic organisms by relating it to a critical disturbance of the trans-epithelial potential (TEP) across the gills, as predicted by electrochemical theory. The model is based on unproven assumptions. We tested some of these by directly measuring the acute TEP responses to a geometric series of 10 different single salts (NaCl, Na₂SO₄, KCl, K₂SO₄, CaCl₂, CaSO₄, MgCl₂, MgSO₄, NaHCO₃, KHCO₃) in the euryhaline rainbow trout (Oncorhynchus mykiss) and the stenohaline goldfish (Carassius auratus) acclimated to very soft, ion-poor water (hardness 10 mg CaCO₃/L). Results were compared to 24-h and 96-h LC50 data from the literature, mainly from fathead minnow (Pimephales promelas). All salts caused concentration-dependent increases in TEP to less negative/more positive values, in patterns well-described by the Michaelis-Menten equation, or a modified version incorporating substrate inhibition. The ΔTEP above baseline became close to a maximum at the 96-h LC50, except for the HCO₃⁻ salts. Furthermore, the range of ΔTEP values at the LC50 within one species was much more consistent (1.6- to 2.1-fold variation) than the molar concentrations of the different salts at the LC50 (19- to 25-fold variation). ΔTEP responses were related to cation rather than anion concentrations. Overall patterns were qualitatively similar between trout and goldfish, with some quantitative differences, and also in general accord with recently published data on three other species in harder water where ΔTEP responses were much smaller. Blood plasma Na⁺ and K⁺ concentrations were minimally affected by the exposures. The results are in accord with most but not all of the assumptions of the MIT model and support its further development as a predictive tool.
Показать больше [+] Меньше [-]Varying modalities of perinatal exposure to a pesticide cocktail elicit neurological adaptations in mice and zebrafish
2021
Forner-Piquer, Isabel | Klement, Wendy | Gangarossa, Giuseppe | Zub, Emma | de Bock, Frederic | Blaquiere, Marine | Maurice, Tangui | Audinat, Etienne | Faucherre, Adèle | Lasserre, Frederic | Ellero-Simatos, Sandrine | Gamet-Payrastre, Laurence | Jopling, Chris | Marchi, Nicola
Epidemiological indications connect maternal and developmental presence or exposure to pesticides with an increased risk for a spectrum of neurological trajectories. To provide pre-clinical data in support of this hypothesis, we used two distinct experimental models. First, female and male mice were fed immediately prior to mating, and the resulting pregnant dams were continously fed during gestation and lactation periods using chow pellets containing a cocktail of six pesticides at tolerable daily intake levels. Male and female offspring were then tracked for behavioral and in vivo electrophysiological adaptations. Second, a zebrafish model allowed us to screen toxicity and motor-behavior outcomes specifically associated with the developmental exposure to a low-to-high concentration range of the cocktail and of each individual pesticide. Here, we report anxiety-like behavior in aging male mice maternally exposed to the cocktail, as compared to age and gender matched sham animals. In parallel, in vivo electrocorticography revealed a decrease in gamma (40–80 Hz) and an increase of theta (6–9 Hz) waves, delineating a long-term, age-dependent, neuronal slowing. Neurological changes were not accompanied by brain structural malformations. Next, by using zebrafish larvae, we showed an increase of all motor-behavioral parameters resulting from the developmental exposure to 10 μg/L of pesticide cocktail, an outcome that was not associated with midbrain structural or neurovascular modifications as assessed by in vivo 2-photon microscopy. When screening each pesticide, chlorpyrifos elicited modifications of swimming parameters at 0.1 μg/L, while other components provoked changes from 0.5 μg/L. Ziram was the single most toxic component inducing developmental malformations and mortality at 10 μg/L. Although we have employed non-equivalent modalities and timing of exposure in two dissimilar experimental models, these outcomes indicate that presence of a pesticide cocktail during perinatal periods represents an element promoting behavioral and neurophysiological modifications. The study limitations and the possible pertinence of our findings to ecotoxicology and public health are critically discussed.
Показать больше [+] Меньше [-]Electrophysiological, behavioural and biochemical effect of Ocimum basilicum oil and its constituents methyl chavicol and linalool on Musca domestica L
2021
Senthoorraja, Rajendran | Subaharan, Kesavan | Manjunath, Sowmya | Pragadheesh, Vppalayam Shanmugam | Bakthavatsalam, Nandagopal | Mohan, Muthu Gounder | Senthil-Nathan, Sengottayan | Basavarajappa, Sekarappa
Ocimum basilicum essential oil (EO) was evaluated for its biological effects on M. domestica. Characterization of O. basilicum EO revealed the presence of methyl chavicol (70.93%), linalool (9.34%), epi-α-cadinol (3.69 %), methyl eugenol (2.48%), γ-cadinene (1.67%), 1,8-cineole (1.30%) and (E)-β-ocimene (1.11%). The basil EO and its constituents methyl chavicol and linalool elicited a neuronal response in female adults of M. domestica. Adult female flies showed reduced preference to food source laced with basil EO and methyl chavicol. Substrates treated with EO and methyl chavicol at 0.25% resulted in an oviposition deterrence of over 80%. A large ovicidal effect was found for O. basilicum EO (EC₅₀ 9.74 mg/dm³) followed by methyl chavicol (EC₅₀ 10.67 mg/dm³) and linalool (EC₅₀ 13.57 mg/dm³). Adults exposed to EO (LD₅₀ 10.01 μg/adult) were more susceptible to contact toxicity than to methyl chavicol and linalool (LD₅₀ 13.62 μg/adult and LD₅₀ 43.12 μg/adult respectively). EO and its constituents methyl chavicol and linalool also induced the detoxifying enzymes Carboxyl esterase (Car E) and Glutathione S – transferases (GST).
Показать больше [+] Меньше [-]Neurotransmissional, structural, and conduction velocity changes in cerebral ganglions of Lumbricus terrestris on exposure to acrylamide
2016
Subaraja, Mamangam | Vanisree, A. J.
Acrylamide (ACR), an environmental toxin though being investigated for decades, remains an enigma with respect to its mechanism/site of actions. We aim to explicate the changes in cerebral ganglions and giant fibers along with the behavior of worms on ACR intoxication (3.5–17.5 mg/mL of medium/7 days). Neurotransmitter analysis revealed increased levels of excitatory glutamate and inhibitory gamma amino butyrate with reduced levels of dopamine, serotonin, melatonin, and epinephrine (p < 0.001). Scanning electron microscopy showed architectural changes in cerebral ganglions at 3.5 mg/mL/ACR. The learning behavior as evidenced by Pavlovian and maze tests was also altered well at 3.5 mg/mL of ACR. Electrophysiological assessment showed a reduction in conduction velocity of the medial and lateral giant nerve fibers. We speculate that the observed dose/time-dependent changes in neurotransmission, neurosecretion, and conduction velocity on ACR intoxication at 17.5 mg/ml, possibly, could be due to its effect on nerve fibers governing motor functions. The bioaccumulation factor in the range of 0.38–0.99 mg/g of ACR causes a detrimental impact on giant fibers affecting behavior of worm. The observations made using the simple invertebrate model implicate that the cerebral ganglionic variations in the worms may be useful to appreciate the pathology of the neurological diseases which involve motor neuron dysfunction, esp where the availability of brain samples from the victims are scarce.
Показать больше [+] Меньше [-]Adverse effects of fly ashes used as immobilizing agents for highly metal-contaminated soils on Xenopus laevis oocytes survival and maturation—a study performed in the north of France with field soil extracts
2020
Marchand, Guillaume | Demuynck, Sylvain | Slaby, Sylvain | Lescuyer, Arlette | Lemière, Sébastien | Marin, Matthieu
Amphibians are now recognized as the most endangered group. One of this decline causes is the degradation of their habitat through direct contamination of water, soil leaching, or runoff from surrounding contaminated soils and environments. In the North of France, the extensive industrial activities resulted in massive soil contamination by metal compounds. Mineral amendments were added to soils to decrease trace metal mobility. Because of the large areas to be treated, the use of inexpensive industrial by-products was favored. Two types of fly ashes were both tested in an experimental site with the plantation of trees in 2000. Aim of the present work was to investigate the effects of extracts from metal-contaminated soils treated or not for 10 years with fly ashes on Xenopus laevis oocyte using cell biology approaches. Indeed, our previous studies have shown that the Xenopus oocyte is a relevant model to study the metal ion toxicity. Survival and maturation of oocyte exposed to the soil extracts were evaluated by phenotypic approaches and electrophysiological recordings. An extract derived from a metal-contaminated soil treated for 10 years with sulfo-calcic ashes induced the largest effects. Membrane integrity appeared affected and ion fluxes in exposed oocytes were changed. Thus, it appeared that extracted elements from certain mineral amendments used to prevent the mobility of metals in the case of highly metal-contaminated soils could have a negative impact on X. laevis oocytes.
Показать больше [+] Меньше [-]