Уточнить поиск
Результаты 1-3 из 3
Heavy Metal Determination in Atmospheric Deposition and Other Fluxes in Northern France Agrosystems
2004
Azimi, Sam | Cambier, Philippe | Lecuyer, Isabelle | Thevenot, Daniel, R. | Centre d'Enseignement et de Recherche Eau Ville Environnement (CEREVE) ; AgroParisTech-École des Ponts ParisTech (ENPC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12) | Unité de Sciences du Sol ; Institut National de la Recherche Agronomique (INRA)
International audience | The aim of this study is to assess the annual balance of the fluxes of Cd, Cu, Ni, Pb and Zn within different cropping systems, in an experimental site located near Versailles, France. Four fluxes through the cultivated horizon were considered to assess the annual heavy metal balance in these systems: 1) atmospheric depositions, 2) fertilisers as inputs, 3) crops and 4) leaching water as outputs. The water mass flow was estimated with a model (CERES) while the other parameters were actually measured through field sampling. Some large uncertainties are related to analytical detection limits, specially for Pb which presents very low concentrations in nitrogen fertilisers, in crops and in soil solution. Cd was also close to the detection limits in atmospheric deposition and in soil water, and Zn could not be analysed in soil solution. Nevertheless, the following trends clearly appeared: firstly, atmospheric deposition is the major input way of Cu, Ni, Pb and Zn in the soil, whatever the cropping system, whereas Cd is introduced mainly by fertilisers. Secondly, the uptake of heavy metal by wheat is generally larger than by a pea culture, except for Ni. Finally, the global pattern shows an accumulation of Cd, Ni and Pb in the cultivated horizon while Cu decreased. The annual balances, during the cropping year 2001–2002, represented about 0.33, −0.024, 0.014 and 0.014% of the actual stocks in the cultivated horizon, of Cd, Cu, Ni, and Pb, respectively.
Показать больше [+] Меньше [-]Heavy Metal Determination in Atmospheric Deposition and Other Fluxes in Northern France Agrosystems
2004
Azimi, Sam | Cambier, Philippe | Lecuyer, Isabelle | Thevenot, Daniel, R. | Centre d'Enseignement et de Recherche Eau Ville Environnement (CEREVE) ; AgroParisTech-École des Ponts ParisTech (ENPC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12) | Unité de Sciences du Sol ; Institut National de la Recherche Agronomique (INRA)
International audience | The aim of this study is to assess the annual balance of the fluxes of Cd, Cu, Ni, Pb and Zn within different cropping systems, in an experimental site located near Versailles, France. Four fluxes through the cultivated horizon were considered to assess the annual heavy metal balance in these systems: 1) atmospheric depositions, 2) fertilisers as inputs, 3) crops and 4) leaching water as outputs. The water mass flow was estimated with a model (CERES) while the other parameters were actually measured through field sampling. Some large uncertainties are related to analytical detection limits, specially for Pb which presents very low concentrations in nitrogen fertilisers, in crops and in soil solution. Cd was also close to the detection limits in atmospheric deposition and in soil water, and Zn could not be analysed in soil solution. Nevertheless, the following trends clearly appeared: firstly, atmospheric deposition is the major input way of Cu, Ni, Pb and Zn in the soil, whatever the cropping system, whereas Cd is introduced mainly by fertilisers. Secondly, the uptake of heavy metal by wheat is generally larger than by a pea culture, except for Ni. Finally, the global pattern shows an accumulation of Cd, Ni and Pb in the cultivated horizon while Cu decreased. The annual balances, during the cropping year 2001–2002, represented about 0.33, −0.024, 0.014 and 0.014% of the actual stocks in the cultivated horizon, of Cd, Cu, Ni, and Pb, respectively.
Показать больше [+] Меньше [-]Living in polluted waters: A meta-analysis of the effects of nitrate and interactions with other environmental stressors on freshwater taxa
2020
Gomez Isaza, Daniel F. | Cramp, Rebecca L. | Franklin, Craig E.
Nutrient effluents from urban and agricultural inputs have resulted in high concentrations of nitrate in freshwater ecosystems. Exposure to nitrate can be particularly threatening to aquatic organisms, but a quantitative synthesis of the overall effects on amphibians, amphipods and fish is currently unavailable. Moreover, in disturbed ecosystems, organisms are unlikely to face a single stressor in isolation, and interactions among environmental stressors can enhance the negative effects of nitrate on organisms. Here, the effects of elevated nitrate on activity level, deformity rates, hatching success, growth and survival of three taxonomic groups of aquatically respiring organisms are documented. Effect sizes were extracted from 68 studies and analysed using meta-analytical techniques. The influence of nitrate on life-stages was also assessed. A factorial meta-analysis was conducted to examine the effect of nitrate and its interaction with other ecological stressors on organismal survival. Overall, the impacts of nitrate are biased towards amphibians (46 studies) and fish (13 studies), and less is known about amphipods (five studies). We found that exposure to nitrate translates to a 79% decrease in activity, a 29% decrease in growth, and reduces survival by 62%. Nitrate exposure also increases developmental deformities but does not affect hatching success. Nitrate exposure was found to influence all life-stages except embryos. Differences in the sensitivity of nitrate among taxonomic groups tended to be negligible. The factorial meta-analysis (14 amphibians and two amphipod studies) showed that nitrate in combination with other stressors affects survival in a non-additive manner. Our results indicate that nitrate can have strong effects on aquatic organisms and can interact with other environmental stressors which compound the negative effects on survival. Overall, the impacts of nitrate and additional stressors are complex requiring a holistic approach to better conserve freshwater biodiversity in the face of ongoing global change.
Показать больше [+] Меньше [-]