Уточнить поиск
Результаты 1-10 из 62
Influences of eutrophication on methanogenesis pathways and methanogenic microbial community structures in freshwater lakes
2020
Yang, Yuyin | Chen, Jianfei | Tong, Tianli | Xie, Shuguang | Liu, Yong
Freshwater lakes, especially eutrophic ones, have become a hotspot of methanogenesis. However, the effects of eutrophication and seasonality on methanogenesis activity and methanogenic microbial community remain unclear. In the current study, for two adjacent lakes at different trophic status, their methanogenesis potential in different seasons was evaluated using incubation experiments. The density, diversity, and community structure of methanogens were analyzed based on the mcrA gene. Correlation analysis and redundancy analysis were carried out to identify the environmental factors driving the variations of methanogenesis potential and methanogen community. The results showed that eutrophication could result in active methanogenesis with relatively high seasonal variance. The methanogenesis variation could be well explained by carbon input in association with algal growth, as well as the change of methanogen population density. With the dominance of Methanomicrobiales in both lakes, the hydrogenotrophic pathway had a major contribution to total methane production. The considerable proportion of Methanomassiliicocales in eutrophic lake implied that methylotrophic methanogenesis might be previously underestimated. These results added new insights towards methanogenesis process in eutrophic freshwater lakes.
Показать больше [+] Меньше [-]Temporal trends of “old” and “new” persistent halogenated organic pollutants in fish from the third largest freshwater lake in China during 2011–2018 and the associated health risks
2020
Ma, Jinjing | Li, Xiangnan | Ma, Shengtao | Zhang, Xiaolan | Li, Guiying | Yu, Yingxin
The study aimed to investigate temporal trends of “old” and “new” persistent halogenated organic pollutants (HOPs) in Taihu Lake, the third largest freshwater lake in China, and the associated health risks. Five fish species were consecutively collected from the lake every year during 2011–2018. HOPs including 37 polychlorinated biphenyls (PCBs), 10 organochlorine pesticides (OCPs), short- and medium-chain chlorinated paraffins (SCCPs and MCCPs), 19 polybrominated diphenyl ethers (PBDEs), and 10 new brominated flame retardants (NBFRs), were measured. The results showed that all the HOPs were detected, with MCCPs and NBFRs showing the highest and lowest concentrations, respectively. The levels of SCCPs and MCCPs were several orders of magnitude higher than those of the other HOPs. There were obvious increasing trends for SCCPs, MCCPs, and hexachlorobenzene, but a decreasing trend for PBDEs. No obvious increasing or decreasing trends were observed for the other HOPs. The present study indicated that the use of NBFRs to replace PBDEs was not yet clearly observed. Fish consumption did not result in non-carcinogenic risks, but posed low carcinogenic risks, with PCBs and DDTs being the highest-risk contaminants because of historical residues. This is the first study for the temporal variations of the HOPs in the lake.
Показать больше [+] Меньше [-]Benthic cyanobacterial detritus mats in lacustrine sediment: Characterization and odorant producing potential
2020
Qi, Chuang | Zhang, Limin | Fang, Jiaqi | Lei, Bo | Tang, Xiangcheng | Huang, Hexiao | Wang, Zhuosen | Si, Zejun | Wang, Guoxiang
Eutrophic freshwater lake ecosystems are receiving increasing public attention due to a global increase in large-scale harmful cyanobacterial blooms in surface waters. However, the contribution of phytodetritus accumulation in benthic sediments post-bloom remains unclear. In this study, field investigations were performed using microsensors to evaluate benthic phytodetritus mats by measuring TOC/TN ratios, pigments, biodegradable compounds and odorants as descriptive parameters. Results show that the massive amount of phytodetritus trapped by aquatic plants gradually evolved into benthic cyanobacterial detritus mats, which were characterized as anoxic, reductive and low pH. It was confirmed that the occurrence of odorants is more serious in the detritus mats due to decay and decomposition of the accumulated phytodetritus. The mean odorant content in the vegetated zones was 3–52 times higher than that in the unvegetated zones. The dominant odorants were dimethyl trisulfide (DMTS), β-ionone and β-cyclocitral, with mean contents of 52.38 ng·(g·dw)-1, 162.20 ng·(g·dw)-1 and 307.51 ng·(g·dw)-1, respectively, in the sediment. In addition, odorant production appears to be associated with the distribution of biodegradable compounds in the sediment. This is supported by the marked correlation observed between biodegradable compounds and odorants. Multiple regression analysis showed that biodegradable compounds can be used as indicators to predict odorant content in the sediment. It is noteworthy that the odorant trend in the water column and sediment is symmetrical, indicating a risk of diffusion from the sediment to the water column. This study helps to clarifying the contributions of benthic cyanobacterial detritus mats to odorant production in shallow eutrophic lakes. The information provided herein may also be useful for future management of aquatic ecosystems.
Показать больше [+] Меньше [-]Simultaneous determination of (N-ethyl perfluorooctanesulfonamido ethanol)-based phosphate diester and triester and their biotransformation to perfluorooctanesulfonate in freshwater sediments
2018
Zhang, Shiyi | Peng, Hui | Mu, Di | Zhao, Haoqi | Hu, Jianying
While (N-ethyl perfluorooctanesulfonamido ethanol)-based phosphates (SAmPAPs) have been proposed as a group of perfluorooctanesulfonate (PFOS) precursors, investigation of their occurrence and fate has been limited to SAmPAP diester. In this study, SAmPAP diester and triester were simultaneously determined in freshwater sediment from Taihu Lake using a newly developed UPLC-MS/MS method, and their biotransformation to PFOS in lake sediment was investigated. SAmPAP diester and triester were detected in sediments with a detection frequency of 56% and 88%, and their mean concentrations were 0.24 ± 0.11 ng/g dry weight (dw) and 0.12 ± 0.03 ng/g dw, respectively. The SAmPAP diester/triester ratio in sediment was 1.1 ± 4.2, much lower than that (6.7) observed in the technical product, and the positive correlation was found between the concentrations of SAmPAP diester and PFOS in sediments (r² = 0.45, p = 0.01), suggesting that SAmPAP diester would be biotransformed to PFOS in the lake sediment. The microbial degradation test in the lake sediments further clarified that SAmPAP diester was biodegraded to PFOS, but SAmPAP triester was highly recalcitrant to microbial degradation. This study suggests that the occurrence of SAmPAP diester in freshwater lake sediments may be an important precursor of PFOS.
Показать больше [+] Меньше [-]Toxicity-associated changes in the invasive cyanobacterium Cylindrospermopsis raciborskii in response to nitrogen fluctuations
2018
Yang, Yiming | Chen, Youxin | Cai, Fangfang | Liu, Xiang | Wang, Yilang | Li, Renhui
The cyanobacterium Cylindrospermopsis raciborskii is of particular concern due to its ability to fix nitrogen (N), sporadic bloom, potential toxicity and apparent invasiveness. However, the toxicity associated behavior and response of toxic C. raciborskii under N fluctuations in water have been poorly investigated. The present study initiated based on the field survey in which Cylindrospermopsis species was found to have a high fitness under nitrate concentrations fluctuating from 0.02 mg L−1 to 2.90 mg L−1 in Chinese freshwater lakes. Examination on the role of short-term N fluctuations was conducted in two C. raciborskii strains which were exposed to a range of N concentrations supplied in two patterns, namely one-time pattern and ten-time pattern in which the equal amount of N was divided into ten-time accretions. The results showed the growth of both strains were not vulnerable to the transient nutrient fluctuations. The toxic strain showed considerable toxicological flexibility with the highest yield of cylindrospermopsin (CYN) obtained in the absence of N and the lowest in full medium. Generally, larger amounts of total CYN were observed at lower N levels, indicating that N deficiency promoted the intracellular accumulation and simultaneously restrained the extracellular release of CYN. Furthermore, CYN production was significantly different in two N supply patterns. The maximum quotas of intracellular and extracellular CYN in one-time pattern were respectively 2.79–3.53 and 3.94–7.20 times higher compared to the ten-time pattern. To our knowledge, our results are the first evidence of toxicity variations of C. raciborskii to the impermanent N fluctuations, shedding new light on its toxicological plasticity.
Показать больше [+] Меньше [-]How does Three Gorges Dam regulate heavy metal footprints in the largest freshwater lake of China
2022
Wang, Hua | Yuan, Weihao | Zeng, Yichuan | Liang, Dongfang | Deng, Yanqing | Zhang, Xinyue | Li, Yuanyuan
Herein, a two-dimensional (2-D) vertically-averaged hydrodynamic model was applied to study the heavy metal particle footprints pre- and post-Three Gorges Dam (TGD) in Poyang Lake. Two defined indexes-Reserve Impact Index (σRII) and Species Impact Index (ηSII) were applied to assess the potential impact of the copper footprint on nature reserves and sensitive species quantitatively. The results demonstrated that the movement speed, distribution, and trajectory of copper particle footprints differed enormously pre- and post-TGD. By contrast, the post-TGD footprints were more complex because of the dam-induced variations in hydrology and meteorology. TGD had both pros and cons for the copper footprint on the reserves based on the results of σRII. It had changed the way for the transport of heavy metals and altered the patterns of exposure risk in the reserves. Sustainable management of Poyang Lake could be achieved by optimizing daily monitoring works. The ηSII for Finless Porpoises do not differ significantly between scenarios, but the ηSII for Siberian White Cranes increased by 0.92 and 0.83 for the two periods pre- and post-TGD, respectively. Heavy metals in food sources and the excreta of Siberian White Cranes could be of great concern in future studies. This study provides a theoretical basis for the in-depth study of the TGD-induced impact on Poyang Lake and provides a reference for the long-term treatment of Poyang Lake and the protection of key species.
Показать больше [+] Меньше [-]Bioaccumulation and trophic transfer of organic ultraviolet absorbents in the food web of a freshwater lake: Implications for risk estimation
2022
Lyu, Yang | Zhong, Fuyong | Tang, Zhenwu | He, Ying | Han, Xue
Organic ultraviolet absorbents (UVAs) are increasingly reported in environmental matrices and organisms. However, available information on the bioaccumulation of UVAs in freshwater species is insufficient and their trophodynamics in lake food webs remain unknown. We measured the concentrations of twelve UVAs in the wild species from Lake Chaohu. Except for UV-320 not detected, the other UVAs were prevalent in the study species and their total concentrations were in the range of 5.44–131 ng/g dry weight, which were comparable to the concentrations reported in other waters. Compound and species-specific accumulations of UVAs in the organisms were observed. In the lake, the log-transformed concentrations of 4-methyl benzylidene camphor, octyl p-dimethylaminobenzoate, UV-326, and UV-327 related significantly to the trophic levels of species separately. The calculated trophic magnification factors (TMFs) of the four UVAs were 3.79, implying trophic magnification, and 0.18, 0.40 and 0.58, suggesting trophic dilution, respectively. These suggested that the magnification potential and the associated risks of individual UVAs in freshwater lake differed. To our knowledge, this is the first report of these TMFs in lake food webs. However, more investigation is needed to characterize their trophodynamic behaviors in lakes because food web characteristics likely affect trophic transfer of these chemicals.
Показать больше [+] Меньше [-]Comparative analysis of antibiotic resistance genes on a pig farm and its neighboring fish ponds in a lakeside district
2022
Fu, Chenxi | Ding, Huijun | Zhang, Qianqian | Song, Yaqiong | Wei, Yuguang | Wang, Yao | Wang, Boming | Guo, Jiaxuan | Qiao, Min
Antibiotics usage in animal production is considered a primary driver of the occurrence, supply and spread of antibiotic resistance genes (ARGs) in the environment. Pig farms and fish ponds are important breeding systems in food animal production. In this study, we compared and analyzed broad ARGs profiles, mobile genetic elements (MGEs) and bacterial communities in a representative pig farm and neighboring fish ponds around Poyang Lake, the largest freshwater lake in China. The factors influencing the distribution of ARGs were also explored. The results showed widespread detection of ARGs (from 57 to 110) among 283 targeted ARGs in the collected water samples. The differences in the number and relative abundance of ARGs observed from the pig farm and neighboring fish ponds revealed that ARG contamination was more serious on the pig farm than in the fish ponds and that the water treatment plant on the pig farm was not very effective. Based on the variance partition analysis (VPA), MGEs, bacterial communities and water quality indicators (WIs) codrive the relative abundance of ARGs. Based on network analysis, we found that total phosphorus and Tp614 were the most important WIs and MGEs affecting ARG abundance, respectively. Our findings provide fundamental data on farms in lakeside districts and provide insights into establishing standards for the discharge of aquaculture wastewater.
Показать больше [+] Меньше [-]Glyphosate and glufosinate-ammonium in aquaculture ponds and aquatic products: Occurrence and health risk assessment
2022
Yan, Biao | Lei, Lei | Chen, Xiangping | Men, Jun | Sun, Yumiao | Guo, Yongyong | Yang, Lihua | Wang, Qidong | Han, Jian | Zhou, Bingsheng
As the two most commonly used organophosphorus herbicides, glyphosate (Gly) and glufosinate-ammonium (Glu) have unique properties for weed control and algae removal in aquaculture. However, the occurrences and health risks of Gly and Glu in aquaculture ponds are rare known. This study aimed to investigate the occurrences of Gly, AMPA (primary metabolity of Gly) and Glu in surface water, sediment and aquatic products from the grass carp (ctenopharyngodon idella), crayfish (procambarus clarkii) and crab (eriocheir sinensis) ponds around Lake Honghu, the largest freshwater lake in Hubei province, China where aquaculture has become the local pillar industry. Three age groups (children, young adults, middle-aged and elderly) exposure to these compounds through edible aquatic products (muscle) consumption were also assessed by target hazard quotient (THQ) method. The results indicated that Gly, AMPA and Glu were widely occurred in surface water, sediment and organisms in the fish, crayfish and crab ponds. AMPA was more likely to accumulate in the intestine of aquatic products than Gly and Glu. According to the total THQ value (1.04>1), muscle consumption of grass carp may pose potential risk to children.
Показать больше [+] Меньше [-]Distribution, source and behavior of rare earth elements in surface water and sediments in a subtropical freshwater lake influenced by human activities
2022
Jiang, Chunlu | Li, Yanhao | Li, Chang | Zheng, Lanlan | Zheng, Liugen
As tracers, rare earth elements (REEs) can reflect the influence of human activities on the environmental changes in aquatic systems. To reveal the geochemical behavior of REEs in a water–sediment system influenced by human activities, the contents of REEs in the surface water and sediment in the Chaohu Lake Basin were measured by inductively coupled plasma mass spectrometry (ICP–MS). The results show that the ΣREE contents in the surface water are 0.10–0.850 μg L⁻¹, the ΣREE contents in the sediments are 71.14–210.01 μg g⁻¹, and the average contents are 0.24 μg L⁻¹ and 126.72 μg g⁻¹, respectively. Almost all water and sediment samples have obvious light REE (LREE) enrichment, which is the result of the input of LREE-rich substances released by natural processes and human activities (industrial and agricultural production). Under the alkaline water quality conditions of Chaohu Lake, REEs (especially LREEs) are easily removed from water by adsorption/coprecipitation reactions with suspended colloidal particles, which leads to the enrichment of LREEs in sediments. The Ce anomaly of the water–sediment system is related to the oxidation environment, while the Eu anomaly is related to the plagioclase crystallization. Significant Gd anomalies was observed in the downstream of rivers flowing through urban areas, which was related to the anthropogenic Gd wastewater discharged by hospitals. The ∑REE–δEu and provenance index (PI) discrimination results are consistent, indicating that the sediments in Chaohu Lake mainly come from rivers flowing through the southwest farmland. Furthermore, the spatial distribution of REEs shows that these tributaries are significantly affected by agricultural activities. The distribution and accumulation of REEs in Chaohu Lake are the result of the interaction of natural and human processes. The results can provide a scientific reference for the distribution and environmental behavior of REEs in aquatic environments disturbed by human beings.
Показать больше [+] Меньше [-]