Уточнить поиск
Результаты 1-7 из 7
Effects of a glyphosate-based herbicide on Fucus virsoides (Fucales, Ochrophyta) photosynthetic efficiency Полный текст
2018
Falace, Annalisa | Tamburello, Laura | Guarnieri, G. (Giuseppe) | Kaleb, Sara | Papa, Loredana | Fraschetti, Simonetta
Herbicides are increasingly recognised as sources of water pollution. Glyphosate-based herbicides (GBHs) are widely used because of their low cost and high effectiveness. By measuring the photosynthetic efficiency of Fucus virsoides fronds exposed to a GBH (Roundup® Power 2.0), we investigated the effect of a continuous exposure (6 days) and the potential of recovery after a short exposure (24 h). Both experiments were carried out combining GBH with and without nutrient enrichment, simulating a runoff event. A factorial experimental design allowed us to assess the potential of interactions between GBH and nutrients, which are likely to co-occur in coastal areas. Our results show deleterious effects of GBH at low concentration on F. virsoides, independently from the duration of exposure and the presence of nutrients.
Показать больше [+] Меньше [-]Gene expression response of the alga Fucus virsoides (Fucales, Ochrophyta) to glyphosate solution exposure Полный текст
2020
Gerdol, Marco | Visintin, Andrea | Kaleb, Sara | Spazzali, Francesca | Pallavicini, Alberto | Falace, Annalisa
Fucus virsoides is an ecologically important canopy-forming brown algae endemic to the Adriatic Sea. Once widespread in marine coastal areas, this species underwent a rapid population decline and is now confined to small residual areas. Although the reasons behind this progressive disappearance are still a matter of debate, F. virsoides may suffer, like other macroalgae, from the potential toxic effects of glyphosate-based herbicides.Here, through a transcriptomic approach, we investigate the molecular basis of the high susceptibility of this species to glyphosate solution, previously observed at the morphological and eco-physiological levels. By simulating runoff event in a factorial experiment, we exposed F. virsoides to glyphosate (Roundup® 2.0), either alone or in association with nutrient enrichment, highlighting significant alterations of gene expression profiles that were already visible after three days of exposure. In particular, glyphosate exposure determined the near-complete expression shutdown of several genes involved in photosynthesis, protein synthesis and stress response molecular pathways. Curiously, these detrimental effects were partially mitigated by nutrient supplementation, which may explain the survival of relict population in confined areas with high nutrient inputs.
Показать больше [+] Меньше [-]The response of the algae Fucus virsoides (Fucales, Ochrophyta) to Roundup® solution exposure: A metabolomics approach Полный текст
2019
Felline, S. | Del Coco, L. | Kaleb, S. | Guarnieri, G. | Fraschetti, S. | Terlizzi, A. | Fanizzi, F.P. | Falace, A.
Glyphosate, as a broad-spectrum herbicide, is frequently detected in water and several studies have investigated its effects on several freshwater aquatic organisms. Yet, only few investigations have been performed on marine macroalgae. Here, we studied both the metabolomics responses and the effect on primary production in the endemic brown algae Fucus virsoides exposed to different concentration (0, 0.5, 1.5 and 2.5 mg L⁻¹) of a commercial glyphosate-based herbicide, namely Roundup®. Our results show that Roundup® significantly reduced quantum yield of photosynthesis (Fᵥ/Fₘ) and caused alteration in the metabolomic profiles of exposed thalli compared to controls. Together with the decrease in the aromatic amino acids (phenylalanine and tyrosine), an increase in shikimate content was detected. The branched-amino acids differently varied according to levels of herbicide exposure, as well as observed for the content of choline, formate, glucose, malonate and fumarate. Our results suggest that marine primary producers could be largely affected by the agricultural land use, this asking for further studies addressing the ecosystem-level effects of glyphosate-based herbicides in coastal waters.
Показать больше [+] Меньше [-]Dynamics of δ15N isotopic signatures of different intertidal macroalgal species: Assessment of bioindicators of N sources in coastal areas Полный текст
2016
Lemesle, Stéphanie | Erraud, Alexandre | Mussio, Isabelle | Rusig, Anne-Marie | Claquin, Pascal
δ15N of annual (Ulva sp., Porphyra sp.) and perennial intertidal seaweed species (Chondrus crispus, Fucus sp.) collected on 17 sampling points along the French coast of the English Channel in 2012 and 2013 were assessed on their suitability as bioindicators of N pollution in coastal areas. A sine function applied for δ15N time series data showed for all the species the same seasonal trend with lowest δ15N values in April and highest in summer but with no significant interspecific differences of amplitude (α) and phase angle (ϕ). This model provides a useful tool for monitoring the inter-annual changes of N pollution. An interspecific variability of δ15N values was observed, probably due to their tolerance to emersion. An in vitro study for comparing the kinetic acquisition of the isotopic signal and N uptake mechanisms of each species underlined the influence of algal physiology on the δ15N interspecific variability.
Показать больше [+] Меньше [-]Impact of aquaculture and agriculture nutrient sources on macroalgae in a bioassay study Полный текст
2021
Streicher, Michael D. | Reiss, Henning | Reiss, Katrin
Impact of aquaculture and agriculture nutrient sources on macroalgae in a bioassay study Полный текст
2021
Streicher, Michael D. | Reiss, Henning | Reiss, Katrin
Eutrophication is a major threat to aquatic ecosystems, because excessive nutrient enrichment may result in the loss of ecosystem services. Fjord systems are specifically under pressure due to nutrient input from land (agriculture) and sea (aquaculture). In this bioassay study, we have analyzed the effect of different nutrient sources, as well as their combination, on growth, nutrient composition and recruitment of habitat-forming and ephemeral macrophytes. We found that agricultural fertilizer increased growth for all algae (except Fucus), while the fish farm effluents mainly increased growth of Ulva. The C:N ratio was hardly affected by the fish farm, but decreased significantly in all algae when agriculture fertilizer was added. Most interestingly, however, distance to the fish farm modulated the algal response to the fertilizer. Our results demonstrate the importance of studying effects of multiple stressors in aquatic ecosystems to sustainably manage the consequences of anthropogenic impacts.
Показать больше [+] Меньше [-]Impact of aquaculture and agriculture nutrient sources on macroalgae in a bioassay study | Impact of aquaculture and agriculture nutrient sources on macroalgae in a bioassay study Полный текст
2021
Streicher, Michael Daniel | Reiss, Henning | Reiss, Katrin
Eutrophication is a major threat to aquatic ecosystems, because excessive nutrient enrichment may result in the loss of ecosystem services. Fjord systems are specifically under pressure due to nutrient input from land (agriculture) and sea (aquaculture). In this bioassay study, we have analyzed the effect of different nutrient sources, as well as their combination, on growth, nutrient composition and recruitment of habitat-forming and ephemeral macrophytes. We found that agricultural fertilizer increased growth for all algae (except Fucus), while the fish farm effluents mainly increased growth of Ulva. The C:N ratio was hardly affected by the fish farm, but decreased significantly in all algae when agriculture fertilizer was added. Most interestingly, however, distance to the fish farm modulated the algal response to the fertilizer. Our results demonstrate the importance of studying effects of multiple stressors in aquatic ecosystems to sustainably manage the consequences of anthropogenic impacts. | publishedVersion
Показать больше [+] Меньше [-]Two simple washing procedures allow the extraction of positively buoyant microplastics (>500 μm) from beach wrack Полный текст
2020
Dittmann, Sinja | Lenz, Mark
Two simple washing procedures allow the extraction of positively buoyant microplastics (>500 μm) from beach wrack Полный текст
2020
Dittmann, Sinja | Lenz, Mark
So far, no procedure has been established that allows the extraction of microplastics from organic-rich environmental matrices such as beach wrack. Here we present two novel, easy and cost-effective methods for extracting microplastics from Baltic Sea beach wrack consisting of Zostera marina L. or Fucus spp. Samples of either Zostera marina L. or Fucus spp. were spiked with defined amounts of either expanded polystyrene (EPS) or polypropylene (PP) in three size classes (500–1000, 1000–2000 and 2000–5000 μm). Afterwards, we placed the material between two grids inside a water-filled container and tested the separation efficiency by applying two methods. We either moved the grids up and down manually or bubbled the container with air to analyse the influence of a) beach wrack type, b) particle type, c) particle size, d) washing procedure and e) washing effort on particle recovery. Both procedures turned out to be efficient and easy to apply.
Показать больше [+] Меньше [-]Experiment on washing procedures to extract positively buoyant microplastics (> 500 µm) from beach wrack Полный текст
2020
Dittmann, Sinja | Lenz, Mark
The "beach wrack - plastic separator" is the prototype of a simple construction that we used to assess two methods for washing beach wrack. Its main component is a polypropylene container that is 40 x 30 x 22 cm in size and has a volume of 20.8 l. Furthermore, we used two grids (39.5 cm x 25.5 cm) that could be inserted horizontally into the container and between which a beach wrack sample of 500 g could be placed. The grids were made of aluminium and had a mesh size of 1 cm x 1 cm. Two handles were attached to the lower of the two grids that allowed to move the grids vertically inside the container. As soon as the container was filled with 10 litres of tap water, the upper grid prevented the beach wrack from floating to the surface, while the lower kept it from settling on the bottom of the container. The separation of the plastic particles from the sample material was induced by moving the grids up and down manually or by bubbling pressured air, which was supplied through air inlets, through the beach wrack material.For assessing the extraction efficiency of the two washing procedures, 48 kg of beach wrack were collected at the beach of Falckenstein, which is located at the western shore of the outer Kiel Fjord, Germany, (N 54.391250, E 10.190728) from May to August 2018. After collection, we divided the 48 kg into 96 batches of 500 g each, which were then spiked with microplastic particles. Half of the batches consisted of Zostera leaves, while the other half consisted of thalli of Fucus spp. We did not dry the material prior to spiking and we used two types of polymers of three size classes to be able to assess the influence of polymer type and particle size on the recovery rate. We have used polypropylene (PP) fragments with a density of 0.88 to 0.91 g/cm3 (Herrera et al., 2018) and spheres of expanded polystyrene (EPS), with a density of 0.01 to 0.05 g/cm3 (Herrera et al., 2018). The densities of both polymer types are lower than seawater. The different particle size classes were either manually created or directly purchased. We tested the following three size classes: 500 to 1000 µm, 1000 to 2000 µm and 2000 to 5000 µm. We have produced PP fragments from plastic cups (wall thickness: 0.5 mm) that we collected at the driftline of the beach of Falckenstein, and which had the polymer type indicated on their bottom. The cups, which were free of epibionts, were cut into quadratic fragments that fell into the three size classes using a scissor. The EPS spheres were purchased in the same size classes. A defined number of particles from each of the three size classes was weighed on a laboratory scale. Then the particles were carefully mixed into the beach wrack at a weight ratio of 1 : 1x104 (2000 to 5000 µm) or 1 : 1x105 (the two remaining size classes). To achieve the weight ratios mentioned above, we either added a) 19 particles of PP or 15 particles of EPS in the size range of 1000 to 2000 µm, b) 30 particles of PP or 20 particles of EPS in the size range of 500 to 1000 µm or c), 12 particles of PP or 26 particles of EPS in the size range of 2000 to 5000 µm to one individual batch. For each replicate, the PP and EPS particles were counted and weighed individually. After spiking, we let the beach wrack rest for a maximum of 20 minutes and then placed the material between the two grids in the beach wrack - plastic separator. The lower grid was at a distance of 1 to 2 cm to the bottom, what would allow negatively buoyant microplastic particles (not tested in this study) to sink to the bottom of the container and to accumulate underneath the lower grid. The separation efficiency of both procedures was then analysed regarding the following four factors: 1. type of beach wrack, 2. polymer type 3. polymer size and 4. duration of washing. The principle component of the separation process was the induction of a water flow, which detached the plastic particles from the surface of the macrophyes and also released them from hollows between their leaves or thalli. In the manual washing process, this was achieved by moving the grids up and down ten times in quick succession with an amplitude of 15 cm. The amplitude as well as the speed and number of repetitions then resulted in an up- and downward flow of water through the sample material that was strong enough to separate the microplastic particles from the macrophytes. The released particles floated up and were picked manually from the water surface. The particles were identified as either PP or EPS particles belonging to one of the three size classes. This was done after each single movement of the grids (up and down), so that particle extraction success could be assessed for each polymer type/size class as a function of the washing effort. This procedure was repeated with both types of beach wrack (Zostera marina L. and Fucus spp.), for both particle types (PP fragments and EPS spheres) and for all size classes within each particle type. For each of these 12 treatment combinations (beach wrack type with two levels x particle type with two levels x size class with three levels), we had four replicates and we used new beach wrack and new plastic material for each of them. The air-facilitated washing of the beach wrack was also done with tap water. For this, three cylindrical diffusor stones (diameter: 50 mm) were connected to an electric air compressor (Pontec PondoAir Set 200) via tubes (diameter: 4 mm, total length: 100 cm) and placed underneath the lower grid. Again, individual batches of 500 g of beach wrack were placed in between the two grids and were then bubbled with air for four hours at an overall discharge rate of 200 l pressured air/h. This rate generated a water flow through the sample material with a velocity that was sufficient to separate the microplastic particles from the beach wrack material. In addition to this, the air bubbles themselves presumably released particles from macrophyte surfaces or from hollows between their thalli or leaves. This was done by the shear stress they exerted when getting in direct contact with a particle or by transferring a momentum that set the particle in motion.
Показать больше [+] Меньше [-]Twenty years of elemental analysis of marine biota within the German Environmental Specimen Bank—a thorough look at the data Полный текст
2010
Rüdel, Heinz | Fliedner, Annette | Kösters, Jan | Schröter-Kermani, Christa
Purpose As one component of the German ecological environment observation, the Environmental Specimen Bank program was initiated in the mid-1980s. Under the program, representative specimens of marine, fresh water, and terrestrial ecosystems are sampled regularly and archived under chemically stable conditions. An initial characterization of the samples provides data regarding the status quo of the respective ecosystems. The aim of the present publication is to give insight into these real-time monitoring data, which have been generated for the last 10 to 20 years. This is done exemplarily for the heavy metals cadmium (Cd), mercury (Hg), and lead (Pb) in marine specimens of the Baltic and the North Sea. Methods Bladder wrack (Fucus vesiculosus), blue mussel (Mytilus edulis), eelpout (Zoarces viviparus), and eggs of herring gulls (Larus argentatus) were sampled at one location in the Baltic Sea and at two sites in the North Sea (Schleswig-Holstein Wadden Sea and Lower Saxony Wadden Sea). Annual samples were pooled, homogenized, and analyzed for a set of elements. Cd and Pb were quantified after freeze-drying and microwave digestion using inductively coupled plasma-mass spectrometry. Total Hg in freeze-dried samples was determined by atomic absorption spectrometry using a direct mercury analyzer. Results Time series data covering up to two decades revealed comparable cadmium levels at all three locations. Concentrations in bladder wrack ranged between 0.10 and 0.37 µg/g on a wet weight basis (ww). Respective values for blue mussel and eelpout liver were 0.07-0.29 and 0.01-0.10 µg/g ww. Herring gull eggs were not included in cadmium analyses. Declining trends were observed in North Sea bladder wrack and mussels, eelpout from the Lower Saxony site, and mussels from the Baltic Sea. Upward trends were apparent in eelpout from the Schleswig-Holstein location. Mercury concentrations in Baltic Sea specimens ranged from 1.1-2.7 ng/g ww in bladder wrack to 2.6-5.1, 26-52, and 86-226 ng/g ww in blue mussel, eelpout muscle, and herring gull eggs, respectively. No temporal trends were observed. North Sea bladder wrack had accumulated 5.4-24 ng/g ww Hg. The respective Hg values for blue mussel and eelpout muscle were 19-64 and 73-187 ng/g ww. Highest Hg contents were detected in herring gull eggs (90-1,100 ng/g ww). Declining trends of Hg were observed in herring gull eggs at both North Sea locations and in blue mussels at the Lower Saxony site. Lead concentrations in Baltic Sea specimens were 48-222 ng/g ww in bladder wrack, 85-189 ng/g ww in blue mussel, 2.0-9.5 and 10-42 ng/g ww in eelpout muscle and liver, and 2.7-26 ng/g ww in herring gull eggs. In the North Sea, Pb concentrations were as follows: 68-397 ng/g ww in bladder wrack, 101-507 ng/g ww in blue mussels, 2.6-35 and 5.9-158 ng/g ww in eelpout muscle and liver, and 3.5-55 ng/g ww in herring gull eggs. Highest Pb-levels were found at the Lower Saxony site. Declining Pb-trends were observed in bladder wrack from the Baltic Sea; in bladder wrack and mussel at the Schleswig-Holstein location; and in bladder wrack, mussels, eelpout liver, and herring gull eggs at the Lower Saxony site. Conclusions During the 10 to 20 years of monitoring, reliable data were obtained which allow a good insight into metal contamination of marine biota. Assessment of the data according to OSPAR criteria (OSPAR 2005) revealed cadmium levels above the derived background concentrations in mussels of all three sites. Mercury levels above background concentrations were found at both North Sea locations, whereas only mussels at the Lower Saxony site had Pb concentrations above the reference value. Archived specimens are available for further analyses and questions which may arise in the future (speciation of elements, metallomics).
Показать больше [+] Меньше [-]