Уточнить поиск
Результаты 1-10 из 31
Exposure to diclofop-methyl induces cardiac developmental toxicity in zebrafish embryos
2020
Cao, Zigang | Huang, Yong | Xiao, Juhua | Cao, Hao | Peng, Yuyang | Chen, Zhiyong | Liu, Fasheng | Wang, Honglei | Liao, Xinjun | Lu, Huiqiang
Diclofop-methyl (DM) is one of the most widely used herbicides in agriculture production and has been frequently detected in both freshwater and environments, even agricultural products. However, the potential toxic effects of DM on organisms and the underlying mechanisms are still poorly understood. In this study, we utilized zebrafish to evaluate the toxicity of DM during the cardiovascular developmental process. Exposure of zebrafish embryos to 0.75, 1.0 and 1.25 mg/L DM induced cardiac defects, such as pericardial edema, slow heart rate and long SV-BA distance but the vascular development in zebrafish larvae was not influenced by DM treatment. The expression of cardiac-related genes were disordered and DM exposure initiated disordering cardiogenesis from the period of precardiac mesoderm formation. Moreover, the apoptosis and proliferation of cardiomyocytes were not influenced but the levels of oxidative stress were upregulated by DM exposure. Fullerenes and astaxanthin was able to rescue cardiac defects caused by DM via downregulating oxidative stress. Wnt signaling was downregulated after DM treatment and activation of Wnt signaling could rescue cardiac defects. Therefore, our results suggest that DM has the potential to induce cardiac developmental toxicity through upregulation of Wnt-Mediated (reactive oxygen species) ROS generation in zebrafish larvae.
Показать больше [+] Меньше [-]The chronic effects of fullereneC60-associated sediments in the midge Chironomus riparius – Responses in first and second generations
2017
Waissi, G.C. | Väänänen, K. | Nybom, I. | Pakarinen, K. | Akkanen, J. | Leppänen, M.T. | Kukkonen, J.V.K.
The life cycle parameters of the benthic invertebrate Chironomus riparius make it a relevant organism for use in multi-generation chronic ecotoxicology tests. Since studies on chronic exposures with fullerene carbon nanoparticles have revealed adverse effects at lower concentration ranges, it is crucial to gain understanding of the consequences in following generations. The aims of this study were to investigate whether sediment-associated fullereneC60 impacts on C. riparius emergence and breeding, thus affecting the growth of the second generation. Larvae were exposed to fullerene-spiked sediment at concentrations of 0.5, 10 and 40 mg/kg sediment dw. Total emergence and breeding success were monitored after the first generation and the newly hatched larvae from the first generation exposure were transferred either to continuous exposure or to pristine sediments without fullerene. Findings indicate that the presence of fullerenes have major impacts on the first generation, mainly shown as delayed emergence time of females. Increased larval growth was observed in the second generation, and we conclude that the C. riparius response to fullerene exposure indicated significant signs of recovery in second-generation larval growth. The result shows the effects to be important for population dynamics, revealing delayed female emergence time, which leads to situation where adults’ breeding is inhibited.
Показать больше [+] Меньше [-]Soil microbial response to photo-degraded C60 fullerenes
2016
Berry, Timothy D. | Clavijo, Andrea P. | Zhao, Yingcan | Jafvert, Chad T. | Turco, Ronald F. | Filley, Timothy R.
Recent studies indicate that while unfunctionalized carbon nanomaterials (CNMs) exhibit very low decomposition rates in soils, even minor surface functionalization (e.g., as a result of photochemical weathering) may accelerate microbial decay. We present results from a C60 fullerene-soil incubation study designed to investigate the potential links between photochemical and microbial degradation of photo-irradiated C60. Irradiating aqueous ¹³C-labeled C60 with solar-wavelength light resulted in a complex mixture of intermediate products with decreased aromaticity. Although addition of irradiated C60 to soil microcosms had little effect on net soil respiration, excess ¹³C in the respired CO2 demonstrates that photo-irradiating C60 enhanced its degradation in soil, with ∼0.78% of 60 day photo-irradiated C60 mineralized. Community analysis by DGGE found that soil microbial community structure was altered and depended on the photo-treatment duration. These findings demonstrate how abiotic and biotic transformation processes can couple to influence degradation of CNMs in the natural environment.
Показать больше [+] Меньше [-]Fullerenes(nC60) affect the growth and development of the sediment-dwelling invertebrate Chironomus riparius larvae
2015
Waissi-Leinonen, Greta C. | Nybom, Inna | Pakarinen, Kukka | Akkanen, Jarkko | Leppänen, Matti T. | Kukkonen, Jussi V.K.
The possible toxicity of nanoparticles (NPs) to aquatic organisms needs to be investigated for chronic effects at low concentrations. Chronic effects of carbon NPs, fullerenesC60, on the midges of Chironomus riparius at different life stages on larvae and adult midges were investigated. Sediment associated fullerenesC60 were studied by 10-day growth and 42-day emergence tests with artificial sediment at nominal concentration ranges 0.0004–80 mg/kg dry weight. The body length decreased in the lower tested concentrations (0.0025–20 mg/kg), but the effect vanished with higher concentrations. Delayed emergence rate observed at 0.5 mg/kg. The observed effects correlated with analyzed sediment particle sizes indicating that small agglomerates of fullerene have more significant effects on C. riparius than larger agglomerates observed with higher C60 doses. The results reveal that fullerene may pose risks to benthic organisms, emerging as changes in the ecotoxic parameters studied here which inflects by the survival of the population.
Показать больше [+] Меньше [-]Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials
2014
Sun, Tian Yin | Gottschalk, Fadri | Hungerbühler, Konrad | Nowack, Bernd
Concerns about the environmental risks of engineered nanomaterials (ENM) are growing, however, currently very little is known about their concentrations in the environment. Here, we calculate the concentrations of five ENM (nano-TiO2, nano-ZnO, nano-Ag, CNT and fullerenes) in environmental and technical compartments using probabilistic material-flow modelling. We apply the newest data on ENM production volumes, their allocation to and subsequent release from different product categories, and their flows into and within those compartments. Further, we compare newly predicted ENM concentrations to estimates from 2009 and to corresponding measured concentrations of their conventional materials, e.g. TiO2, Zn and Ag. We show that the production volume and the compounds' inertness are crucial factors determining final concentrations. ENM production estimates are generally higher than a few years ago. In most cases, the environmental concentrations of corresponding conventional materials are between one and seven orders of magnitude higher than those for ENM.
Показать больше [+] Меньше [-]Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies
2013
Gottschalk, Fadri | Sun, TianYin | Nowack, Bernd
Scientific consensus predicts that the worldwide use of engineered nanomaterials (ENM) leads to their release into the environment. We reviewed the available literature concerning environmental concentrations of six ENMs (TiO2, ZnO, Ag, fullerenes, CNT and CeO2) in surface waters, wastewater treatment plant effluents, biosolids, sediments, soils and air. Presently, a dozen modeling studies provide environmental concentrations for ENM and a handful of analytical works can be used as basis for a preliminary validation. There are still major knowledge gaps (e.g. on ENM production, application and release) that affect the modeled values, but over all an agreement on the order of magnitude of the environmental concentrations can be reached. True validation of the modeled values is difficult because trace analytical methods that are specific for ENM detection and quantification are not available. The modeled and measured results are not always comparable due to the different forms and sizes of particles that these two approaches target.
Показать больше [+] Меньше [-]Testing the resistance of fullerenes to chemothermal oxidation used to isolate soots from environmental samples
2011
Flores-Cervantes, D Xanat | Bucheli, Thomas D.
We tested the resistance of five different fullerenes (C₆₀, C₇₀, C₇₆/₇₈ mix, and C₈₄) to chemothermal oxidation at 375 °C (CTO-375), a method that has been used and tested for quantifying black carbon (BC) and CNTs in soils and sediments. C₆₀ survived CTO-375 the most (50%), while C₇₀ was the fullerene with the lowest survival rate (<1%). Standard additions of C₆₀ to soil and sediment reference materials yielded recoveries between 18 and 36%. Although lower than recoveries previously observed for soot and CNTs, these results demonstrate the capability of CTO-375 to partially isolate C₆₀ from solid environmental matrices. Standard additions of C₇₀, C₇₆/₇₈, and C₈₄ yielded slightly higher survival rates when added to soil and sediment than in their pure form. These results indicate that the mineral matrices of these samples probably had a catalytic effect towards C₆₀ and a protective effect towards C₇₀, C₇₆/₇₈, and C₈₄ during CTO-375.
Показать больше [+] Меньше [-]A critical review of advances in reproductive toxicity of common nanomaterials to Caenorhabditis elegans and influencing factors
2022
Yao, Yongshuai | Zhang, Ting | Tang, Meng
In recent decades, nanotechnology has rapidly developed. Therefore, there is growing concern about the potential environmental risks of nanoparticles (NPs). Caenorhabditis elegans (C. elegans) has been used as a powerful tool for studying the potential ecotoxicological impacts of nanomaterials from the whole animal level to single cell level, especially in the area of reproduction. In this review, we discuss the reproductive toxicity of common nanomaterials in C. elegans, such as metal-based nanomaterial (silver nanoparticles (NPs), gold NPs, zinc oxide NPs, copper oxide NPs), carbon-based nanomaterial (graphene oxide, multi-walled carbon nanotubes, fullerene nanoparticles), polymeric NPs, silica NPs, quantum dots, and the potential mechanisms involved. This insights into the toxic effects of existing nanomaterials on the human reproductive system. In addition, we summarize how the physicochemical properties (e.g., size, charge, surface modification, shape) of nanomaterials influence their reproductive toxicity. Overall, using C. elegans as a platform to develop rapid detection techniques and prediction methods for nanomaterial reproductive toxicity is expected to reduce the gap between biosafety evaluation of nanomaterials and their application.
Показать больше [+] Меньше [-]Eugenol mitigated acute lung but not spermatic toxicity of C60 fullerene emulsion in mice
2021
Pinheiro, Felipe Gomes | Moreira-Gomes, Maria Diana | Machado, Mariana Nascimento | Almeida, Tailane dos Santos | Barboza, Priscila da Penha Apolinário | Silva Oliveira, Luis Felipe | Ávila Cavalcante, Francisco Sales | Leal-Cardoso, José Henrique | Fortunato, Rodrigo Soares | Zin, Walter Araujo
C₆₀ fullerene (C₆₀) is a nano-pollutant that can damage the respiratory system. Eugenol exhibits significant anti-inflammatory and antioxidant properties. We aimed to investigate the time course of C₆₀ emulsion-induced pulmonary and spermatic harms, as well as the effect of eugenol on C₆₀ emulsion toxicity. The first group of mice (protocol 1) received intratracheally C₆₀ emulsion (1.0 mg/kg BW) or vehicle and were tested at 12, 24, 72 and 96 h (F groups) thereafter. The second group of mice (protocol 2) received intratracheally C₆₀ emulsion or vehicle, 1 h later were gavaged with eugenol (150 mg/kg) or vehicle, and experiments were done 24 h after instillation. Lung mechanics, morphology, redox markers, cytokines and epididymal spermatozoa were analyzed. Protocol 1: Tissue damping (G) and elastance (H) were significantly higher in F24 than in others groups, except for H in F72. Morphological and inflammatory parameters were worst at 24 h and subsequently declined until 96 h, whereas redox and spermatic parameters worsened over the whole period. Eugenol eliminated the increase in G, H, cellularity, and cytokines, attenuated oxidative stress induced by C60 exposure, but had no effect on sperm. Hence, exposure to C₆₀ emulsion deteriorated lung morphofunctional, redox and inflammatory characteristics and increased the risk of infertility. Furthermore, eugenol avoided those changes, but did not prevent sperm damage.
Показать больше [+] Меньше [-]Uptake, transportation, and accumulation of C60 fullerene and heavy metal ions (Cd, Cu, and Pb) in rice plants grown in an agricultural soil
2018
Liang, Chuanzhou | Xiao, Haijun | Hu, Ziqi | Zhang, Xu | Hu, Jun
The mutual influences of C₆₀ fullerene (C₆₀) and heavy metal ions (Cd, Cu, and Pb) on the uptake, transportation, and accumulation of these coexisting pollutants in four rice cultivars planted in agricultural soil were investigated during the whole life cycle of rice. The biomass of the rice plants was not affected significantly by the presence of C₆₀. C₆₀ exposure exerted different impacts on the bioaccumulation of Cd, Cu, and Pb in various rice tissues. For example, the bioaccumulation of Cd in rice 9311 panicles was significantly decreased (p < .05) when it was exposed to 1000 mg/kg C₆₀, whereas the changes of Cu and Pb levels in panicles were not statistically significant. C₆₀ was absorbed by rice roots and transported to the stems and panicles, and it tended to form aggregates in rice tissues. C₆₀ concentrations in the roots, stems, and panicles of the four rice cultivars that were harvested after a 130-day exposure to 600 mg/kg C₆₀ were 40–292, 4.4–24.5 and 0.077–1.2 mg/kg (dry weight), respectively. C₆₀ and heavy metal ions exhibited different uptake and transportation mechanisms, which depended on the rice cultivar, soil heavy metal ion concentration, and C₆₀ exposure time and concentration. For example, the average C₆₀ in the four rice cultivars was increased sharply, from 47.4 to 196.3 mg/kg from the tillering to booting stages, whereas Cd levels increased only slightly, from 23.1 to 25.9 mg/kg. The study demonstrated that the bioaccumulation of C₆₀ and heavy metal ions under co-contamination scenario differs from under single contaminant. The accumulation of C₆₀ in rice panicles may increase the concern of food safety.
Показать больше [+] Меньше [-]