Уточнить поиск
Результаты 1-10 из 44
Adsorptive removal of propranolol under fixed-bed column using magnetic tyre char: Effects of wastewater effluent organic matter and ball milling
2022
Feizi, Farzaneh | Sarmah, Ajit K. | Rangsivek, Ropru | Gobindlal, Kapish
We investigated the competitive effects of different fractions of wastewater treatment plant effluent organic matter (EfOM) on adsorption of an organic micro pollutant (OMP), propranolol (PRO), in a fixed bed column packed with magnetic tyre char (MTC). The results showed that the presence of EfOM inhibited PRO adsorption in wastewater leading to decreased PRO adsorption capacity from 5.86 to 2.03 mg/g due to competitive effects and pore blockage by smaller EfOM fractions. Characterization of EfOM using size exclusion chromatography (LC-OCD) showed that the principal factor controlling EfOM adsorption was pore size distribution. Low molecular weight neutrals had the highest adsorption onto MTC while humic substances were the least interfering fraction. Effect of important parameters such as contact time, linear velocity and bed height/diameter ratio on MTC performance was studied in large-lab scale columns. Linear velocity and contact time were found to be effective in increasing adsorption capacity of PRO on MTC and delaying breakthrough time. Increase in linear velocity from 0.64 cm/min to 1.29 cm/min increased mass transfer and dispersion, resulting in considerable rise of adsorbed amount (5.86 mg/g to 22.58 mg/g) and increase in breakthrough time (15.8–62.7 h). Efficiency of non-equilibrium Hydrus model considering dispersion and mass transfer mechanism was demonstrated for real wastewater and scale up purposes. Ball milling for degradation of adsorbed PRO and regeneration of MTC resulted in 79% degradation of PRO was achieved after 5 h milling (550 rpm), while the addition of quartz sand increased the efficiency to 92%.
Показать больше [+] Меньше [-]Comparison of different methods for MP detection: What can we learn from them, and why asking the right question before measurements matters?
2017
Elert, Anna M. | Becker, Roland | Duemichen, Erik | Eisentraut, Paul | Falkenhagen, Jana | Sturm, Heinz | Braun, Ulrike
In recent years, an increasing trend towards investigating and monitoring the contamination of the environment by microplastics (MP) (plastic pieces < 5 mm) has been observed worldwide. Nonetheless, a reliable methodology that would facilitate and automate the monitoring of MP is still lacking. With the goal of selecting practical and standardized methods, and considering the challenges in microplastics detection, we present here a critical evaluation of two vibrational spectroscopies, Raman and Fourier transform infrared (FTIR) spectroscopy, and two extraction methods: thermal extraction desorption gas chromatography mass spectrometry (TED-GC-MS) and liquid extraction with subsequent size exclusion chromatography (SEC) using a soil with known contents of PE, PP, PS and PET as reference material. The obtained results were compared in terms of measurement time, technique handling, detection limits and requirements for sample preparation. The results showed that in designing and selecting the right methodology, the scientific question that determines what needs to be understood is significant, and should be considered carefully prior to analysis. Depending on whether the object of interest is quantification of the MP particles in the sample, or merely a quick estimate of sample contamination with plastics, the appropriate method must be selected. To obtain overall information about MP in environmental samples, the combination of several parallel approaches should be considered.
Показать больше [+] Меньше [-]Using two-dimensional correlation size exclusion chromatography (2D-CoSEC) to explore the size-dependent heterogeneity of humic substances for copper binding
2017
Lee, Yun-Kyung | Hur, Jin
Knowledge of the heterogeneous distribution of humic substances (HS) reactivities along a continuum of molecular weight (MW) is crucial for the systems where the HS MW is subject to change. In this study, two dimensional correlation spectroscopy combined with size exclusion chromatography (2D-CoSEC) was first utilized to obtain a continuous and heterogeneous presence of copper binding characteristics within bulk HS with respect to MW. HS solutions with varying copper concentrations were directly injected into a size exclusion chromatography (SEC) system with Tris-HCl buffer as a mobile phase. Several validation tests confirmed neither structural disruption of HS nor competition effect of the mobile phase used. Similar to batch systems, fluorescence quenching was observed in the chromatograms over a wide range of HS MW. 2D-CoSEC maps of a soil-derived HS (Elliot soil humic acid) showed the greater fluorescence quenching degrees with respect to the apparent MW on the order of 12500 Da > 10600 Da > 7000 Da > 15800 Da. The binding constants calculated based on modified Stern-Volmer equation were consistent with the 2D-CoSEC results. More heterogeneity of copper binding affinities within bulk HS was found for the soil-derived HS versus an aquatic HS. The traditional fluorescence quenching titration method using ultrafiltered HS size fractions failed to delineate detailed distribution of the copper binding characteristics, exhibiting a much shorter range of the binding constants than those obtained from the 2D-CoSEC. Our proposed technique demonstrated a great potential to describe metal binding characteristics of HS at high MW resolution, providing a clear picture of the size-dependent metal-HS interactions.
Показать больше [+] Меньше [-]Biodegradation of low-density polyethylene and polystyrene in superworms, larvae of Zophobas atratus (Coleoptera: Tenebrionidae): Broad and limited extent depolymerization
2020
Peng, Bo-Yu | Li, Yiran | Fan, Rui | Chen, Zhibin | Chen, Jiabin | Brandon, Anja M. | Criddle, Craig S. | Zhang, Yalei | Wu, Weimin
Larvae of Zophobas atratus (synonym as Z. morio, or Z. rugipes Kirsch, Coleoptera: Tenebrionidae) are capable of eating foams of expanded polystyrene (EPS) and low-density polyethylene (LDPE), similar to larvae of Tenebrio molitor. We evaluated biodegradation of EPS and LDPE in the larvae from Guangzhou, China (strain G) and Marion, Illinois, U.S. (strain M) at 25 °C. Within 33 days, strain G larvae ingested respective LDPE and PS foams as their sole diet with respective consumption rates of 58.7 ± 1.8 mg and 61.5 ± 1.6 mg 100 larvae⁻¹d⁻¹. Meanwhile, strain M required co-diet (bran or cabbage) with respective consumption rates of 57.1 ± 2.5 mg and 30.3 ± 7.7 mg 100 larvae⁻¹ d⁻¹. Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, and thermal gravimetric analyses indicated oxidation and biodegradation of LDPE and EPS in the two strains. Gel permeation chromatography analysis revealed that strain G performed broad depolymerization of EPS, i.e., both weight-average molecular weight (Mw) and number-average molecular weight (Mₙ) of residual polymers decreased, while strain M performed limited extent depolymerization, i.e., Mw and Mₙ increased. However, both strains performed limited extent depolymerization of LDPE. After feeding antibiotic gentamicin, gut microbes were suppressed, and Mw and Mₙ of residual LDPE and EPS in frass were basically unchanged, implying a dependence on gut microbes for depolymerization/biodegradation. Our discoveries indicate that gut microbe-dependent LDPE and EPS biodegradation is present within Z. atratus in Tenebrionidae, but that the limited extent depolymerization pattern resulted in undigested polymers with high molecular weights in egested frass.
Показать больше [+] Меньше [-]To what extent are microplastics from the open ocean weathered?
2017
ter Halle, Alexandra | Ladirat, Lucie | Martignac, Marion | Mingotaud, Anne-Françoise | Boyron, Olivier | Perez, Emile
It is necessary to better characterize plastic marine debris in order to understand its fate in the environment and interaction with organisms, the most common type of debris being made of polyethylene (PE) and polypropylene (PP). In this work, plastic debris was collected in the North Atlantic sub-tropical gyre during the Expedition 7th Continent sea campaign and consisted mainly in PE. While the mechanisms of PE photodegradation and biodegradation in controlled laboratory conditions are well known, plastic weathering in the environment is not well understood. This is a difficult task to examine because debris comes from a variety of manufactured objects, the original compositions and properties of which vary considerably. A statistical approach was therefore used to compare four sample sets: reference PE, manufactured objects, mesoplastics (5–20 mm) and microplastics (0.3–5 mm). Infrared spectroscopy showed that the surface of all debris presented a higher oxidation state than the reference samples. Differential scanning calorimetry analysis revealed that the microplastics were more crystalline contrarily to the mesoplastics which were similar to references samples. Size exclusion chromatography showed that the molar mass decreased from the references to meso- and microplastics, revealing a clear degradation of the polymer chains. It was thus concluded that the morphology of marine microplastic was much altered and that an unambiguous shortening of the polymer chains took place even for this supposedly robust and inert polymer.
Показать больше [+] Меньше [-]Dissolved organic carbon content and characteristics in relation to carbon dioxide partial pressure across Poyang Lake wetlands and adjacent aquatic systems in the Changjiang basin
2016
Wang, Huaxin | Jiao, Ruyuan | Wang, Fang | Zhang, Lu | Yan, Weijin
Dissolved organic carbon (DOC) plays diverse roles in carbon biogeochemical cycles. Here, we explored the link between DOC and pCO2 using high-performance size-exclusion chromatography (HPSEC) with UV254 detection and excitation emission matrix (EEM) fluorescence spectroscopy to determine the molecular weight distribution (MW) and the spectral characteristics of DOC, respectively. The relationship between DOC and pCO2 was investigated in the Poyang Lake wetlands and their adjacent aquatic systems. The results indicated significant spatial variation in the DOC concentrations, MW distributions, and pCO2. The DOC concentration was higher in the wetlands than in the rivers and lakes. pCO2 was high in wetlands in which the dominant vegetation was Phragmites australis, whereas it was low in wetlands in which Carex tristachya was the dominant species. DOC was divided into five fractions according to MW, as follows: super-low MW (SLMW, <1 kDa); low MW (LMW, 1–2.5 kDa); intermediate MW (IMW, 2.5–3.5 kDa); high MW (HMW, 3.5–6 kDa); and super-high MW (SMW, > 40 kDa). Rivers contained high proportions of HMW and extremely low amounts of SLMW, whereas wetlands had relatively high proportions of SLMW. The proportion of SMW (SMWp) was particularly high in wetlands. We found that pCO2 significantly positively correlated with the proportion of IMW, and significantly negatively correlated with SMWp. These data improve our understanding of the MW of bioavailable DOC and its conversion to CO2. The present results demonstrate that both the content and characteristics of DOC significantly affect pCO2. pCO2 and DOC must be studied further to help understanding the role of the wetland on the regional CO2 budget.
Показать больше [+] Меньше [-]Method optimization to measure polybrominated diphenyl ether (PBDE) concentrations in soils of Bratislava, Slovakia
2010
Thorenz, Ute Rita | Bandowe, Benjamin A Musa | Sobocka, Jaroslava | Wilcke, Wolfgang
We modified an analytical method to determine polybrominated diphenyl ethers (PBDEs) in urban soils of Bratislava (Slovakia). Gel permeation chromatography (GPC) introduced as a clean-up step for soil extracts substantially reduced matrix enhancements when PBDEs were measured with gas chromatography-negative chemical ionization-mass spectrometry (GC-NCI-MS). The resulting method proved to be accurate, precise, and showed low detection limits. The sum of 15 PBDE concentrations in surface horizons of Bratislava soils ranged from 87 to 627 pg g-1. PBDE concentrations were mostly higher in surface than deeper horizons probably because of atmospheric deposition and lack of substantial vertical transport. Lower brominated PBDEs undergo more soil-atmosphere exchanges or are more scavenged and transferred with litter fall to the soil organic matter than higher brominated ones as suggested by the correlation between lower brominated PBDEs and soil organic C (Corg) concentrations.
Показать больше [+] Меньше [-]Improved catalytic depolymerization of lignin waste using carbohydrate derivatives
2021
Gu, Sangseo | Choi, Jae-Wook | Lee, Hyunjoo | Suh, Dong Jin | Choi, Jungkyu | Ha, Jeong-Myeong
or sugar-derived compounds were used as environmentally friendly additives for the depolymerization of Kraft lignin waste and organosolv lignin prepared from Miscanthus giganteus. The yields of the aromatic monomers obtained from Kraft lignin increased from 5.1 to 49.2% with the addition of mannitol, while those obtained from organosolv lignin increased from 44.4 to 83.0% with the addition of sucrose. This improved lignin depolymerization was also confirmed by gel permeation chromatography and nuclear magnetic resonance spectroscopy. The above results clearly indicate the beneficial effects of carbohydrate derivatives on the lignin depolymersization process, more specifically, suggesting that the presence of carbohydrates improve the lignin depolymerization of lignocellulose, as observed for the raw lignocellulose feed.
Показать больше [+] Меньше [-]Transformation of 17β-estradiol in humic acid solution by ε-MnO2 nanorods as probed by high-resolution mass spectrometry combined with 13C labeling
2016
Sun, Kai | Liang, Shangtao | Kang, Fuxing | Gao, Yanzheng | Huang, Qingguo
Steroidal estrogens (SEs), widespread in aquatic systems, have a potential to disrupt the endocrine system of wildlife species and humans. In our experiments, the performance of ε-MnO2 nanorods in transforming 17β-estradiol (E2) was investigated, and the effect of humic acid (HA) on the reaction behaviors was systematically characterized. Reconfiguration of humic molecules was also investigated by high-performance size exclusion chromatography (HPSEC). Results indicated that ε-MnO2 nanomaterials ensured efficient removal of E2 from the aqueous solution. The presence of HA hindered the transformation of E2, while enhanced the cross-coupling between E2 and humic molecules. In particular, we used a mixture of un-labeled E2 and 13C3-labeled E2 at a 1: 1 set ratio (w/w) to probe the reaction products via high-resolution mass spectrometry (HRMS). The combination of HRMS and 13C3-labeling revealed the intermediate products including estrone (E1), and hydroxylated, quinone-like, and ring-opened species, as well as E2 dimer and trimer. More importantly, possible cross-coupling products between E2 and HA were also identified. A reaction mechanism including two-electron oxidation and single-electron oxidation was proposed. The applied analytical approach using HRMS along with 13C3-labeling for reaction-product identification is crucial to understanding the role of HA in the transformation of SEs.
Показать больше [+] Меньше [-]Laccase mediated transformation of 17β-estradiol in soil
2015
Singh, Rashmi | Cabrera, Miguel L. | Radcliffe, David E. | Zhang, Hao | Huang, Qingguo
It is known that 17β-estradiol (E2) can be transformed by reactions mediated by some oxidoreductases such as laccase in water. Whether or how such reactions can happen in soil is however unknown although they may significantly impact the environmental fate of E2 that is introduced to soil by land application of animal wastes. We herein studied the reaction of E2 in a model soil mediated by laccase, and found that the reaction behaviors differ significantly from those in water partly because of the dramatic difference in laccase stability. We also examined E2 transformation in soil using 14C-labeling in combination with soil organic matter extraction and size exclusion chromatography, which indicated that applied 14C radioactivity was preferably bound to humic acids. The study provides useful information for understanding the environmental fate of E2 and for developing a novel soil remediation strategy via enzyme-enhanced humification reactions.
Показать больше [+] Меньше [-]