Уточнить поиск
Результаты 1-10 из 14
Sulfidated nanoscale zero-valent iron is an efficient material for the removal and regrowth inhibition of antibiotic resistance genes
2020
Zhang, Wen-Zhi | Gao, Jing-Feng | Duan, Wan-Jun | Zhang, Da | Jia, Jing-Xin | Wang, Youwei
Antibiotic resistance genes (ARGs) and mobile gene elements (MGEs), the emerging genetic contaminants, are regarded as severe risks to public health for impairing the inactivation efficacy of antibiotics. Secondary effluents from wastewater treatment plants are the hotspots for spreading these menaces. Herein, sulfidated nanoscale zero-valent iron (S-nZVI) was occupied to remove ARGs and MGEs in secondary effluents and weaken the regrowth capacity of their bacterial carriers. The effects of S/Fe molar ratios (S/Fe), initial pH and dosages on 16S rRNA and ARGs removal were also investigated. Characterization, mass balance and scavenging experiments were conducted to explore the mechanisms of the gene removal. Quantitative PCR (qPCR) and high throughput fluorescence qPCR showed more than 3 log unit of 16S rRNA and seven out of 10 ARGs existed in secondary effluent could be removed after S-nZVI treatment. The mechanisms might be that DNA accepted the electron provided by the Fe⁰ core of S-nZVI after being adsorbed onto S-nZVI surface, causing the decrease of 16S rRNA, ARGs and lost their regrowth capacity, especially for typical MGE (intI1) and further inhibiting the vertical gene transfer (VGT) and intI1-induced horizontal gene transfer (HGT). Fe⁰ core was oxidized to iron oxides and hydroxides at the same time. High throughput sequencing, network analysis and variation partitioning analysis revealed the complex correlations between bacteria and ARGs in secondary effluent, S/Fe could directly influence ARGs variations, and bacterial genera made the greatest contribution to ARGs variations, followed by MGEs and operational parameters. As a result, S-nZVI could be an available reductive approach to deal with bacteria and ARGs.
Показать больше [+] Меньше [-]Acidic conditions enhance the removal of sulfonamide antibiotics and antibiotic resistance determinants in swine manure
2020
Lin, Hui | Sun, Wanchun | Yu, Qiaogang | Ma, Junwei
Manure pH may vary depending on its inherent composition or additive contents. However, the effect of pH on the fate of antibiotics and antibiotic resistance determinants in manure remains unclear. This work demonstrated that pH adjustment promoted the removal of different sulfonamide antibiotics (SAs) within swine manure under incubation conditions, which increased from 26–60.8% to 75.0–86.0% by adjusting the initial pH from neutral (7.4) to acidic (5.4–4.8). Acidification was also demonstrated to inhibit the accumulation of antibiotic resistance genes in manure during incubation. Acidified manure contained both lower absolute and relative abundances of sul1 and sul2 than those at a neutral pH like 7.4. Further investigation indicated that acidification promoted the reduction of sul genes in manure by restricting sulfonamide-resistant bacteria (SRB) proliferation and inhibiting IntI1 accumulation. Furthermore, pH adjustment significantly influenced the composition of the manure bacterial community after incubation, which increased Firmicutes and decreased Proteobacteria. Close relationships were observed between pH-induced enrichment of the Firmicutes bacterial phylum, enhanced SAs degradation, and the fates of antibiotic resistance determinants. Overall, lowering the pH of manure promotes the degradation of SAs, decreases sul genes and SRB, and inhibits horizontal sul gene transfer, which could be a simple yet highly-effective manure management option to reduce antibiotic resistance.
Показать больше [+] Меньше [-]Exploring the contribution of bacteriophages to antibiotic resistance
2017
Lekunberri, Itziar | Subirats, Jèssica | Borrego, Carles M. | Balcázar, José Luis
Bacteriophages (phages) are the most abundant and diverse biological entities in our planet. They infect susceptible bacterial hosts into which they either multiply or persist. In the latter case, phages can confer new functions to their hosts as a result of gene transfer, thus contributing to their adaptation (short-term) and evolution (long-term). In this regard, the role of phages on the dissemination of antibiotic resistance genes (ARGs) among bacterial hosts in natural environments has not yet been clearly resolved. Here, we carry out a comprehensive analysis of thirty-three viromes from different habitats to investigate whether phages harbor ARGs. Our results demonstrate that while human-associated viromes do not or rarely carry ARGs, viromes from non-human sources (e.g. pig feces, raw sewage, and freshwater and marine environments) contain a large reservoir of ARGs, thus pointing out that phages could play a part on the spread of antibiotic resistance. Given this, the role of phages should not be underestimated and it should be considered when designing strategies to tackle the global crisis of antibiotic resistance.
Показать больше [+] Меньше [-]A review on removing antibiotics and antibiotic resistance genes from wastewater by constructed wetlands: Performance and microbial response
2019
Liu, Xiaohui | Guo, Xiaochun | Liu, Ying | Lu, Shaoyong | Xi, Beidou | Zhang, Jian | Wang, Zhi | Bi, Bin
Pollution caused by antibiotics has been highlighted in recent decades as a worldwide environmental and health concern. Compared to traditional physical, chemical and biological treatments, constructed wetlands (CWs) have been suggested to be a cost-efficient and ecological technology for the remediation of various kinds of contaminated waters. In this review, 39 antibiotics removal-related studies conducted on 106 treatment systems from China, Spain, Canada, Portugal, etc. were summarized. Overall, the removal efficiency of CWs for antibiotics showed good performance (average value = over 50%), especially vertical flow constructed wetlands (VFCWs) (average value = 80.44%). The removal efficiencies of sulfonamide and macrolide antibiotics were lower than those of tetracycline and quinolone antibiotics. In addition, the relationship between the removal efficiency of antibiotics and chemical oxygen demand (COD), total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP) and ammonia nitrogen (NH₃-N) concentrations showed an inverted U-shaped curve with turning points of 300 mg L⁻¹, 57.4 mg L⁻¹, 40 mg L⁻¹, 3.2 mg L⁻¹ and 48 mg L⁻¹, respectively. The coexistence of antibiotics with nitrogen and phosphorus slightly reduced the removal efficiency of nitrogen and phosphorus in CWs. The removal effect of horizontal subsurface flow constructed wetlands for antibiotic resistance genes (ARGs) had better performance (over 50%) than that of vertical wetlands, especially for sulfonamide resistance genes. Microorganisms are highly sensitive to antibiotics. In fact, microorganisms are one of the main responsible for antibiotic removal. Moreover, due to the selective pressure induced by antibiotics and drug-resistant gene transfer from resistant bacteria to other sensitive strains through their own genetic transfer elements, decreased microbial diversity and increased resistance in sewage have been consistently reported. This review promotes further research on the removal mechanism of antibiotics and ARGs in CWs.
Показать больше [+] Меньше [-]Chronic impacts of oxytetracycline on mesophilic anaerobic digestion of excess sludge: Inhibition of hydrolytic acidification and enrichment of antibiotic resistome
2018
Tian, Zhe | Zhang, Yu | Yang, Min
We evaluated the chronic impact of oxytetracycline (OTC) on performance and antibiotic resistance development during the mesophilic anaerobic digestion (AD) of antibiotic-containing biomass. Mesophilic AD was conducted in a completely stirred tank reactor by constantly feeding municipal excess sludge spiked with increasing concentrations of OTC (0–1000 mg L−1) under a solid retention time of 20 days over a period of 265 days. Results showed that methane generation of mesophilic AD was inhibited when the OTC concentration in digested sludge was increased to around 18,000 mg kg−1 (OTC dose, 1000 mg L−1), due to the inhibition of fermenting and acidogenic bacteria. Metagenomic sequencing and high-throughput quantitative PCR analysis demonstrated that tetracycline resistance genes were the most dominant type (38.47–43.76%) in the resistome, with tetG, tetX, tetM, tetR, tetQ, tetO, and tetL as the dominant resistant subtypes throughout the whole experimental period. The relative abundance of these tet genes increased from 2.10 × 10−1 before spiking OTC (OTC concentration in digested sludge, 8.97 mg kg−1) to 2.83 × 10−1 (p < 0.05) after spiking OTC at a dose of 40 mg L−1 (OTC concentration in digested sludge, 528.52 mg kg−1). Furthermore, mobile genetic elements, including integrons, transposons, and plasmids, were also enriched with the increase in OTC dose. Based on partial canonical correspondence analysis, the contributions of horizontal (mobile element alteration) and vertical (bacterial community shift) gene transfer to antibiotic resistome variation were 29.35% and 21.51%, respectively. Thus, considering the inhibition of hydrolytic acidification and enrichment of antibiotic resistome, mesophilic AD is not suggested to directly treat the biomass containing OTC concentration higher than 200 mg L−1.
Показать больше [+] Меньше [-]A comprehensive bibliometric overview: antibiotic resistance and Escherichia coli in natural water
2021
Şahin, Semanur | Sivri, Nüket | Akpinar, Isil | Çinçin, Zeynep Birsu | Sönmez, Vildan Zülal
The environment is the most important reservoir for both resistance mechanisms and gene transfer in biological science studies. This study gives a bibliometric overview of studies of “antibiotic resistance” and “Escherichia coli” in the field of “Agricultural and Biological Sciences” from 2015 to 2019 to assess both research trends and scholarly networks in diverse research disciplines. The two keywords of “antibiotic resistance” and “Escherichia coli” were selected to search in the Scopus database. Each review article was categorized into materials, natural waters (i.e., seawater, freshwater) and wastewater, journal name, and quartile in category of the journal, the year of publication, and the country. Bibliometric indicators and visualization maps were utilized to analyse the retrieved data quantitatively and qualitatively. A total of 1376 publications in the field of agricultural and biological sciences over the last 5 years were obtained using the keywords of antibiotic resistance and Escherichia coli. With additional keywords of freshwater and wastewater, 4 and 24 studies were obtained, respectively. Wastewater was found to be the most common working environment for the keywords of antibiotic resistance and Escherichia coli. It is also found that the studies of antibiotic resistance are mainly conducted in wastewater environments, focusing on human and food health. Working under “One Health” consisting of human, animal and agriculture, and environmental health could be the only permanent and effective approach to solving antibiotic resistance-related issues.
Показать больше [+] Меньше [-]Multi-drug resistance, integron and transposon-mediated gene transfer in heterotrophic bacteria from Penaeus vannamei and its culture environment
2022
Nadella, Ranjit Kumar | Panda, Satyen Kumar | Badireddy, Madhusudana Rao | Kurcheti, Pani Prasad | Raman, Ram Prakash | Mothadaka, Mukteswar Prasad
Multi-drug resistance (MDR) in bacteria is regarded as an emerging pollutant in different food production avenues including aquaculture. One hundred and sixty out of 2304 bacterial isolates from shrimp farm samples (n = 192) of Andhra Pradesh, India, were MDR. Based on biochemical identification and 16S rRNA sequencing, they were grouped into 35 bacterial species with the predominance of Vibrio parahaemolyticus (12.5%). The MDR isolates showed highest resistance toward oxytetracycline (89%) with more than 0.2 MAR (multiple antibiotic resistance), demonstrates a high-risk source. The most prevalent antibiotic-resistance gene (ARG) and mobile genetic element (MGE) detected were tetA (47.5%) and int1 (46.2%), respectively. In conjugation experiments, overall transfer frequency was found to be in the range of 1.1 × 10⁻⁹ to 1.8 × 10⁻³ with the transconjugants harbouring ARGs and MGEs. This study exposed the wide distribution of MDR bacteria in shrimp and its environment, which can further aggravate the already raised concerns of antibiotic residues in the absence of proper mitigation measures.
Показать больше [+] Меньше [-]Toxicity of gold nanorods on Ceriodaphnia dubia and Danio rerio after sub-lethal exposure and recovery
2021
Souza, Jaqueline P. | Mansano, Adrislaine S. | Venturini, Francine P. | Marangoni, Valéria S. | Lins, Paula M. P. | Silva, Barbara P. C. | Dressler, Barbara | Zucolotto, Valtencir
Gold nanorods (AuNRs) are rod-shaped nanoparticles (NPs) with special optical properties that allow their application in several areas including photothermal therapy, diagnosis, drug and gene delivery, cellular imaging, and biosensors. Their high potential for many applications increases the possibility of release in aquatic environments, which can cause risks to organisms. In this study, we evaluated toxic effects of AuNRs on cladoceran and fish (Ceriodaphnia dubia and Danio rerio) and their recovery after post-exposure periods. The EC₅₀ of 0.03 mg L⁻¹ was found for C. dubia in the acute exposure. There was a significant decrease in the number of neonates produced and in the filtration rate of C. dubia after sub-lethal exposure to AuNRs. The toxic mechanism of these NPs to cladocerans was attributed to increases in the reactive oxygen species (ROS) generation. After 4 h of recovery in clean medium, C. dubia were able to reestablish the filtration rate. Enzymatic biomarkers for D. rerio showed significant increases in the activity of superoxide dismutase, catalase, and lipid peroxidation after sub-lethal exposure to AuNRs. These biomarkers were recovered after 168 h in clean water. These results are pivotal on the comprehension of AuNR toxicity to aquatic organisms and are useful in assessing this novel nanomaterial impacts on aquatic biota.
Показать больше [+] Меньше [-]Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: risks, current concern, and future thinking
2022
Aquaculture is remarkably one of the most promising industries among the food-producing industries in the world. Aquaculture production as well as fish consumption per capita have been dramatically increasing over the past two decades. Shifting of culture method from semi-intensive to intensive technique and applying of antibiotics to control the disease outbreak are the major factors for the increasing trend of aquaculture production. Antibiotics are usually present at subtherapeutic levels in the aquaculture environment, which increases the selective pressure to the resistant bacteria and stimulates resistant gene transfer in the aquatic environment. It is now widely documented that antibiotic resistance genes and resistant bacteria are transported from the aquatic environment to the terrestrial environment and may pose adverse effects on human and animal health. However, data related to antibiotic usage and bacterial resistance in aquaculture is very limited or even absent in major aquaculture-producing countries. In particular, residual levels of antibiotics in fish and shellfish are not well documented. Recently, some of the countries have already decided the maximum residue levels (MRLs) of antibiotics in fish muscle or skin; however, many antibiotics are yet not to be decided. Therefore, an urgent universal effort needs to be taken to monitor antibiotic concentration and resistant bacteria particularly multiple antibiotic-resistant bacteria and to assess the associated risks in aquaculture. Finally, we suggest to take an initiative to make a uniform antibiotic registration process, to establish the MRLs for fish/shrimp and to ensure the use of only aquaculture antibiotics in fish and shellfish farming globally.
Показать больше [+] Меньше [-]The impact and mechanism of quaternary ammonium compounds on the transmission of antibiotic resistance genes
2019
Han, Yue | Zhou, Zhen-Chao | Zhu, Lin | Wei, Yuan-Yuan | Feng, Wan-Qiu | Xu, Lan | Liu, Yang | Lin, Ze-Jun | Shuai, Xin-Yi | Zhang, Zhi-Jian | Chen, Hong
The emergence of antibiotic resistance genes (ARGs) in microbes can be largely attributed to the abuse and misuse of antibiotics and biocides. Quaternary ammonium compounds (QACs) have been used worldwide as common disinfectants and detergents; however, their potential impact on the spread and diffusion of ARGs is still unknown. In this study, we detected the QAC resistance gene (qacEΔ1), the 1 integron gene (intI1), and 12 ARGs (sul1, sul2, cfr, cml, fexA, tetA, tetG, tetQ, tetX, ermB, blaTEM, and dfrA1) in 48 water samples from three watersheds by quantitative PCR (qPCR). We investigated the evolution of bacterial antibiotic resistance under QAC and antibiotic environmental pressures by long-term continuous culture. In addition, five QACs were selected to investigate the effect of QAC on the efficiency of conjugation transfer. The changes in bacterial cell membrane and production of reactive oxygen species (ROS) were detected by flow cytometry, revealing the mechanism by which QAC affects the spread of antibiotic resistance. Our results showed that the QAC resistance gene was ubiquitous in watersheds and it had significant correlation with intI1 and seven ARGs (r = 0.999, p < 0.01). QACs could increase the resistance of bacteria to multiple antibiotics. Furthermore, all five QACs promoted the conjugation transfer of the RP4 plasmid; the optimal concentration of QACs was about 10⁻¹–10⁻² mg/L and their transfer efficiencies were between 1.33 × 10⁻⁶ and 8.87 × 10⁻⁵. QACs enhanced membrane permeability of bacterial cells and stimulated bacteria to produce ROS, which potentially promoted the transfer of plasmids between bacteria. In conclusion, this study demonstrated that QACs may facilitate the evolution and gene transfer of antibiotic resistance gene among microbiome.
Показать больше [+] Меньше [-]