Уточнить поиск
Результаты 1-10 из 64
Light absorption and fluorescence characteristics of water-soluble organic compounds in carbonaceous particles at a typical remote site in the southeastern Himalayas and Tibetan Plateau Полный текст
2021
Zhang, Chao | Chen, Meilian | Kang, Shichang | Yan, Fangping | Han, Xiaowen | Gautam, Sangita | Hu, Zhaofu | Zheng, Huijun | Chen, Pengfei | Gao, Shaopeng | Wang, Pengling | Li, Yizhong
Carbonaceous particles play an important role in climate change, and an increase in their emission and deposition causes glacier melting in the Himalayas and the Tibetan Plateau (HTP). This implies that studying their basic characteristics is crucial for a better understanding of the climate forcing observed in this area. Thus, we investigated characteristics of carbonaceous particles at a typical remote site of southeastern HTP. Organic carbon and elemental carbon concentrations at this study site were 1.86 ± 0.84 and 0.18 ± 0.09 μg m⁻³, respectively, which are much lower than those reported for other frequently monitored stations in the same region. Thus, these values reflect the background characteristics of the study site. Additionally, the absorption coefficient per mass (α/ρ) of water-soluble organic carbon (WSOC) at 365 nm was 0.60 ± 0.19 m² g⁻¹, with the highest and lowest values corresponding to the winter and monsoon seasons, respectively. Multi-dimensional fluorescence analysis showed that the WSOC consisted of approximately 37% and 63% protein and humic-like components, respectively, and the latter was identified as the component that primarily determined the light absorption ability of the WSOC, which also showed a significant relationship with some major ions, including SO²⁻₄, K⁺, and Ca²⁺, indicating that combustion activities as well as mineral dust were two important contributors to WSOC at the study site.
Показать больше [+] Меньше [-]Black carbon deposited in Hariqin Glacier of the Central Tibetan Plateau record changes in the emission from Eurasia Полный текст
2021
Wang, Mo. | Xu, Baiqing | Wang, Hailong | Zhang, Rudong | Yang, Yang | Gao, Shaopeng | Tang, Xiangxiang | Wang, Ninglian
Black carbon (BC), by the combustion of fossil fuels and biomass, has profound effects on climate change and glacier retreat in industrial eras. In the present study, we report refractory BC (rBC) in an ice core spanning 1850–2014, retrieved from the Hariqin Glacier of the Tanggula Mountains in the central Tibetan Plateau, measured using a single particle soot photometer (SP2). The rBC concentration shows a three-fold increase since the 1950s. The mean rBC concentration was 0.71 ± 0.52 ng mL⁻¹ during 1850s–1940s and 2.11 ± 1.60 ng mL⁻¹ during 1950s–2010s. The substantial increase in rBC since the 1950s is consistent with rBC ice core records from the Tibetan Plateau and Eastern Europe. According to the predominant atmospheric circulation patterns over the glacier and timing of changes in regional emissions, the post-1950 amplification of rBC concentration in the central Tibetan Plateau most likely reflects increases in emissions in Eastern Europe, former USSR, the Middle East, and South Asia. Despite the low-level background rBC concentrations in the ice cores from the Tibetan Plateau, the present study highlights a remarkable increase in anthropogenic BC emissions in recent decades and the consequent influence on glaciers in the Tibetan Plateau.
Показать больше [+] Меньше [-]Atmospheric pollution revealed by trace elements in recent snow from the central to the northern Tibetan Plateau Полный текст
2020
Li, Yuefang | Huang, Ju | Li, Zhen | Zheng, Kui
In order to determine the current levels, spatial distribution patterns, and potential pollution of trace elements (TEs) in the atmosphere of the Tibetan Plateau (TP), snow pit samples were collected in May 2016 from five TP glaciers: Qiyi (QY), Hariqin (HRQ), Meikuang (MK), Yuzhufeng (YZF), and Xiaodongkemadi (XDKMD). Concentrations of 13 TEs (Al, Ba, Cd, Co, Cr, Cu, Fe, Li, Pb, Sb, Sr, U, and Zn) in the snow were measured. The spatial distribution patterns and depth profiles of TEs from the studies sites revealed that the influence of dust on TEs was more significant on the MK and YZF glaciers than on the QY, HRQ, and XDKMD glaciers. The spatial distributions of TE EFFₑ values differed from their concentrations, however. The enrichment factor (EF) values and concentrations of some TEs in the YZF, QY, and XDKMD glaciers revealed that the pollution levels of these elements were significantly lower than those found in previous research. Examination based on EFs, principal component analysis, as well as the calculated non-dust contributions of TEs, revealed that dust was the principal source for most TEs in all five glaciers, while biomass burning was another potential natural source for TEs in some glaciers, such as QY. In contrast, Cd, Ba, Sr, Cu, Pb, Zn, and Sb were occasionally affected by anthropogenic sources such as road traffic emissions, fossil fuel combustion, and mining and smelting of nonferrous metals in and beyond the TP. Air mass backward trajectories revealed that potential pollutants were transported not only from local sources but also from Xinjiang Province in northwestern China, as well as South Asia, Central Asia, the Middle East, and Europe.
Показать больше [+] Меньше [-]Natural versus anthropogenic sources and seasonal variability of insoluble precipitation residues at Laohugou Glacier in northeastern Tibetan Plateau Полный текст
2020
Wei, Ting | Kang, Shichang | Dong, Zhiwen | Qin, Xiang | Shao, Yaping | Rostami, Masoud
This study employs the grain size distributions and the concentrations and isotopic compositions of Sr, Nd, and Pb in the precipitation samples collected from the Laohugou Glacier (LHG) in northeastern Tibetan Plateau (TP) during August 2014–2015 to investigate seasonal variability in the insoluble precipitation particle sources. Fine dust particle (0.57–27 μm) depositions dominated in autumn and winter, whereas both fine and coarse dust particle (27–100 μm) depositions were found in spring and summer. Furthermore, the concentrations of Sr, Nd, and Pb also varied seasonally—the highest and lowest Sr and Nd concentrations were recorded in spring and autumn, respectively, whereas the highest and lowest Pb concentrations were recorded in winter and summer, respectively. The Sr and Nd isotopes revealed that the dust in the winter precipitation originated predominately from the Taklimakan Desert and that in spring originated from the Badain Jaran and Qaidam deserts. The precipitation residues in summer were derived from a complex mixture of dust sources from the Gobi and other large deserts in northwest China. Autumn residues were predominately sourced from local soil near the LHG as well as from the Qaidam Basin and the northern TP surface soil. The Taklimakan, long suspected as a major source of long-range transported dust, was an insignificant contributor to the precipitation over LHG during spring, summer, and autumn. Further, the Pb isotopic ratios indicated a primary impact of anthropogenic pollutants for most part of the year (except spring). Meteorological data and the MODIS AOD model are in good agreement with the results from the analyses of the Sr, Nd, and Pb isotopes for the LHG particle source, and further clarify the source regions. Thus, this study thus provides new evidence on the seasonal variability of the sources of the residual particles in remote glaciers in Central Asia.
Показать больше [+] Меньше [-]Biomass burning source identification through molecular markers in cryoconites over the Tibetan Plateau Полный текст
2019
Li, Quanlian | Wang, Ninglian | Barbante, Carlo | Kang, Shichang | Callegaro, Alice | Battistel, Dario | Argiriadis, Elena | Wan, Xin | Yao, Ping | Pu, Tao | Wu, Xiaobo | Han, Yu | Huai, Yanping
Cryoconite is a dark, dusty aggregate of mineral particles, organic matter, and microorganisms transported by wind and deposited on glacier surfaces. It can accelerate glacier melting and alter glacier mass balances by reducing the surface albedo of glaciers. Biomass burning in the Tibetan Plateau, especially in the glacier cryoconites, is poorly understood. Retene, levoglucosan, mannosan and galactosan can be generated by the local fires or transported from the biomass burning regions over long distances. In the present study, we analyzed these four molecular markers in cryoconites of seven glaciers from the northern to southern Tibetan Plateau. The highest levels of levoglucosan and retene were found in cryoconites of the Yulong Snow Mountain and Tienshan glaciers with 171.4 ± 159.4 ng g⁻¹ and 47.0 ± 10.5 ng g⁻¹ dry weight (d.w.), respectively. The Muztag glacier in the central Tibetan Plateau contained the lowest levels of levoglucosan and retene with mean values of 59.8 ng g⁻¹ and 0.4 ± 0.1 ng g⁻¹ d.w., respectively. In addition, the vegetation changes and the ratios of levoglucosan to mannosan and retene indicate that combustion of conifers significantly contributes to biomass burning of the cryoconites in the Yulong Snow Mountain and Tienshan glacier. Conversely, biomass burning tracers in cryoconites of Dongkemadi, Yuzhufeng, Muztag, Qiyi and Laohugou glaciers are derived from the combustion of different types of biomass including softwood, hardwood and grass.
Показать больше [+] Меньше [-]Persistent organic pollutants in the polar regions and the Tibetan Plateau: A review of current knowledge and future prospects Полный текст
2019
Wang, Xiaoping | Wang, Chuanfei | Zhu, Tingting | Gong, Ping | Fu, Jianjie | Cong, Zhiyuan
Due to their low temperatures, the Arctic, Antarctic and Tibetan Plateau are known as the three polar regions of the Earth. As the most remote regions of the globe, the occurrence of persistent organic pollutants (POPs) in these polar regions arouses global concern. In this paper, we review the literatures on POPs involving these three polar regions. Overall, concentrations of POPs in the environment (air, water, soil and biota) have been extensively reported, with higher levels of dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) detected on the Tibetan Plateau. The spatial distribution of POPs in air, water and soil in the three polar regions broadly reflects their distances away from source regions. Based on long-term data, decreasing trends have been observed for most “legacy POPs”. Observations of transport processes of POPs among multiple media have also been carried out, including air–water gas exchange, air–soil gas exchange, emissions from melting glaciers, bioaccumulations along food chains, and exposure risks. The impact of climate change on these processes possibly enhances the re-emission processes of POPs out of water, soil and glaciers, and reduces the bioaccumulation of POPs in food chains. Global POPs transport model have shown the Arctic receives a relatively small fraction of POPs, but that climate change will likely increase the total mass of all compounds in this polar region. Considering the impact of climate change on POPs is still unclear, long-term monitoring data and global/regional models are required, especially in the Antarctic and on the Tibetan Plateau, and the fate of POPs in all three polar regions needs to be comprehensively studied and compared to yield a better understanding of the mechanisms involved in the global cycling of POPs.
Показать больше [+] Меньше [-]Fragrances and PAHs in snow and seawater of Ny-Ålesund (Svalbard): Local and long-range contamination Полный текст
2018
Vecchiato, Marco | Barbaro, Elena | Spolaor, Andrea | Burgay, Francois | Barbante, Carlo | Piazza, Rossano | Gambaro, Andrea
Polar regions are fragile ecosystems threatened by both long-range pollution and local human contamination. In this context, the environmental distribution of the Personal Care Products (PCPs) represent a major knowledge gap. Following preliminary Antarctic studies, Fragrance Materials (FMs) were analyzed in the seawater and snow collected in the area of Ny-Ålesund, Svalbard, to investigate local and long-range contamination. Polycyclic Aromatic Hydrocarbons (PAHs), including Retene, were determined in parallel to help the identification of the governing processes. Concentrations of FMs up to 72 ng L⁻¹ were detected in the surface snow near the settlement and at increasing distances, in relation to the prevailing winds. PAHs follow a similar scheme, with levels of Retene up to 1.8 μg L⁻¹, likely deriving from the occurrence of this compound in the coal dust due to the previous mining activities in the area. The snow seasonal deposition of FMs and PAHs was estimated in a snowpit dug at the top of the Austre Brøggerbreen glacier, indicating the long-range atmospheric transport (LRAT) of these compounds.
Показать больше [+] Меньше [-]The role of melting alpine glaciers in mercury export and transport: An intensive sampling campaign in the Qugaqie Basin, inland Tibetan Plateau Полный текст
2017
Sun, Xuejun | Wang, Kang | Kang, Shichang | Guo, Junming | Zhang, Guoshuai | Huang, Jie | Cong, Zhiyuan | Sun, Shiwei | Zhang, Qianggong
Glaciers, particularly alpine glaciers, have been receding globally at an accelerated rate in recent decades. The glacial melt-induced release of pollutants (e.g., mercury) and its potential impact on the atmosphere and glacier-fed ecosystems has drawn increasing concerns. During 15th–20th August, 2011, an intensive sampling campaign was conducted in Qugaqie Basin (QB), a typical high mountain glacierized catchment in the inland Tibetan Plateau, to investigate the export and transport of mercury from glacier to runoff. The total mercury (THg) level in Zhadang (ZD) glacier ranged from <1 to 20.8 ng L−1, and was slightly higher than levels measured in glacier melt water and the glacier-fed river. Particulate Hg (PHg) was the predominant form of Hg in all sampled environmental matrices. Mercury concentration in Qugaqie River (QR) was characterized by a clear diurnal variation which is linked to glacier melt. The estimated annual Hg exports by ZD glacier, the upper river basin and the entire QB were 8.76, 7.3 and 157.85 g, respectively, with respective yields of 4.61, 0.99 and 2.74 μg m−2 yr−1. Unique landforms and significant gradients from the glacier terminus to QB estuary might promote weathering and erosion, thereby controlling the transport of total suspended particulates (TSP) and PHg. In comparison with other glacier-fed rivers, QB has a small Hg export yet remarkably high Hg yield, underlining the significant impact of melting alpine glaciers on regional Hg biogeochemical cycles. Such impacts are expected to be enhanced in high altitude regions under the changing climate.
Показать больше [+] Меньше [-]Bacteria contribute to pesticide degradation in cryoconite holes in an Alpine glacier Полный текст
2017
Ferrario, Claudia | Pittino, Francesca | Tagliaferri, Ilario | Gandolfi, Isabella | Bestetti, Giuseppina | Azzoni, Roberto Sergio | Diolaiuti, Guglielmina | Franzetti, Andrea | Ambrosini, Roberto | Villa, Sara
Organic contaminants deposited on glacier snow and ice are subject to partitioning and degradation processes that determine their environmental fate and, consequently, their accumulation in ice bodies. Among these processes, organic compound metabolism by supraglacial bacteria has investigated to a lesser extent than photo- and chemical degradation. We investigated biodegradation of the organophosphorus insecticide chlorpyrifos (CPF), a xenobiotic tracer that accumulates on glaciers after atmospheric medium- and long-range transport, by installing in situ microcosms on an Alpine glacier to simulate cryoconite hole systems. We found that biodegradation contributed to the removal of CPF from the glacier surface more than photo- and chemical degradation. The high concentration of CPF (2–3 μg g−1 w.w.) detected in cryoconite holes and the estimated half-life of this compound (35–69 days in glacier environment) indicated that biodegradation can significantly reduce CPF concentrations on glaciers and its runoff to downstream ecosystems. The metabolic versatility of cryoconite bacteria suggests that these habitats might contribute to the degradation of a wide class of pollutants. We therefore propose that cryoconite acts as a “biofilter” by accumulating both pollutants and biodegradative microbial communities. The contribution of cryoconite to the removal of organic pollutants should be included in models predicting the environmental fate of these compounds in cold areas.
Показать больше [+] Меньше [-]Seasonal accumulation of persistent organic pollutants on a high altitude glacier in the Eastern Alps Полный текст
2016
Kirchgeorg, T. | Dreyer, A. | Gabrielli, P. | Gabrieli, J. | Thompson, L.G. | Barbante, C. | Ebinghaus, R.
The seasonal accumulations of perfluorinated substances (PFAS), polybrominated diphenyl ethers (PBDE) and polycyclic aromatic hydrocarbons (PAH) were measured in a 10 m shallow firn core from a high altitude glacier at Mt. Ortles (Italy, 3830 m above sea level) in South Tyrol in the Italian Eastern Alps. The most abundant persistent organic pollutants of each group were perfluorobutanoic acid (PFBA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA) (for PFASs); BDE 47, BDE 99, BDE 209 (for PBDEs) and phenanthrene (PHE), fluoranthene (FLA) and pyrene (PYR) (for PAHs). All compounds show different extents of seasonality, with higher accumulation during summer time compared to winter. This seasonal difference mainly reflects meteorological conditions with a low and stable atmospheric boundary layer in winter and strong convective activity in summer, transformation processes during the transport of chemicals and/or post-depositional alterations. Change in the composition of the water-soluble PFCAs demonstrates the influence of meltwater percolation through the firn layers.
Показать больше [+] Меньше [-]