Уточнить поиск
Результаты 1-10 из 174
Metabolic syndrome and pesticides: A systematic review and meta-analysis
2022
Lamat, Hugo | Sauvant-Rochat, Marie-Pierre | Tauveron, Igor | Bagheri, Reza | Ugbolue, Ukadike C. | Maqdasi, Salwan | Navel, Valentin | Dutheil, Frédéric
The relation between pesticides exposure and metabolic syndrome (MetS) has not been clearly identified. Performing a systematic review and meta-analysis, PubMed, Cochrane Library, Embase, and ScienceDirect were searched for studies reporting the risk of MetS following pesticides exposure and their contaminants. We included 12 studies for a total of 6789 participants, in which 1981 (29.1%) had a MetS. Overall exposure to pesticides and their contaminants increased the risk of MetS by 30% (95CI 22%–37%). Overall organochlorine increased the risk of MetS by 23% (14–32%), as well as for most types of organochlorines: hexachlorocyclohexane increased the risk by 53% (28–78%), hexachlorobenzene by 40% (0.01–80%), dichlorodiphenyldichloroethylene by 22% (9–34%), dichlorodiphenyltrichloroethane by 28% (5–50%), oxychlordane by 24% (1–47%), and transnonchlor by 35% (19–52%). Sensitivity analyses confirmed that overall exposure to pesticides and their contaminants increased the risk by 46% (35–56%) using crude data or by 19% (10–29%) using fully-adjusted model. The risk for overall pesticides and types of pesticides was also significant with crude data but only for hexachlorocyclohexane (36% risk increase, 17–55%) and transnonchlor (25% risk increase, 3–48%) with fully-adjusted models. Metaregressions demonstrated that hexachlorocyclohexane increased the risk of MetS in comparison to most other pesticides. The risk increased for more recent periods (Coefficient = 0.28, 95CI 0.20 to 0.37, by year). We demonstrated an inverse relationship with body mass index and male gender. In conclusion, pesticides exposure is a major risk factor for MetS. Besides organochlorine exposure, data are lacking for other types of pesticides. The risk increased with time, reflecting a probable increase of the use of pesticides worldwide. The inverse relationship with body mass index may signify a stockage of pesticides and contaminants in fat tissue.
Показать больше [+] Меньше [-]Concentration dynamics of polychlorinated biphenyls and organochlorine pesticides in blood of growing Grey heron (Ardea cinerea) chicks in the wild
2022
Valters, Karlis | Olsson, Anders | Vīksne, J. (Jānis) | Rubene, Liga | Bergman, Åke
Organochlorine contaminants (OCs) – organochlorine pesticides (OCPs) and industrial products and byproducts – are included in different monitoring programmes and surveys, involving various animal species. Fish-eating birds are suitable indicator species for OCs. Adult birds may be difficult to capture, but chicks can be sampled more easily. Blood of birds is a potentially suitable non-destructive matrix for analysis, as OC levels in blood reflect their concentrations in the body. The study was aimed at investigating how age of fast-growing Grey heron (Ardea cinerea) chicks affects contaminant levels in their blood and thus how important is sampling at exact age for biomonitoring purposes. In 1999 on Lake Engure in Latvia whole blood samples of heron chicks were collected at three different time points, with seven and nine days in between the first and second and second and third sampling points, respectively. Twenty-two chicks were sampled at all three times. In total, 102 samples were analysed for 19 polychlorinated biphenyl (PCB) congeners, DDT metabolites – DDE and DDD, hexachlorobenzene (HCB), α-, β-, γ-hexachlorocyclohexane (HCH), and trans-nonachlor. Total PCB concentrations averaged around 2000 ng/g dry extracted matter (EM). DDE was the dominant individual contaminant (ca. 800 ng/g EM), followed by CB-153, -138, and −118. Most of the other analysed OCs were below 100 ng/g EM. No significant (p > 0.05) differences in OC concentrations were found between the three sampling occasions, except for trans-nonachlor. This means that blood can safely be sampled for biomonitoring purposes during the 17 days’ time window. The analysed legacy contaminants may serve as model substances for other persistent organic pollutants.
Показать больше [+] Меньше [-]Differential mitochondrial dysregulation by exposure to individual organochlorine pesticides (OCPs) and their mixture in zebrafish embryos
2021
Lee, Hyojin | Ko, Eun | Shin, Sooim | Choi, Moonsung | Kim, Ki-Tae
Organochlorine pesticides (OCPs) have been reported to cause mitochondrial dysfunction. However, most studies reported its mitochondrial toxicity with respect to a single form, which is far from the environmentally relevant conditions. In this study, we exposed zebrafish embryos to five OCPs: chlordane, heptachlor, p,p’-dichlorodiphenyltrichloroethane (p,p’-DDT), β-hexachlorocyclohexane (β-HCH), and hexachlorobenzene (HCB), as well as an equal ratio mixture of these OCPs. We evaluated mitochondrial function, including oxygen consumption, the activity of mitochondrial complexes, antioxidant reactions, and expression of genes involved in mitochondrial metabolism. Oxygen consumption rate was reduced by exposure to chlordane, and β-HCH, linking to the increased activity of specific mitochondrial complex I and III, and decreased GSH level. We found that these mitochondrial dysfunctions were more significant in the exposure to the OCP mixture than the individual OCPs. On the mRNA transcription level, the individual OCPs mainly dysregulated the metabolic cycle (i.e., cs and acadm), whereas the OCP mixture disrupted the genes related to mitochondrial oxidative phosphorylation (i.e., sdha). Consequently, we demonstrate that the OCP mixture disrupts mitochondrial metabolism by a different molecular mechanism than the individual OCPs, which warrants further study to evaluate mitochondrial dysregulation by chronic exposure to the OCP mixture.
Показать больше [+] Меньше [-]Terrestrial inputs govern spatial distribution of polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) in an Arctic fjord system (Isfjorden, Svalbard)
2021
Johansen, Sverre | Poste, Amanda | Allan, Ian | Evenset, Anita | Carlsson, Pernilla
Considerable amounts of previously deposited persistent organic pollutants (POPs) are stored in the Arctic cryosphere. Transport of freshwater and terrestrial material to the Arctic Ocean is increasing due to ongoing climate change and the impact this has on POPs in marine receiving systems is unknown This study has investigated how secondary sources of POPs from land influence the occurrence and fate of POPs in an Arctic coastal marine system.Passive sampling of water and sampling of riverine suspended particulate matter (SPM) and marine sediments for analysis of polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) was carried out in rivers and their receiving fjords in Isfjorden system in Svalbard. Riverine SPM had low contaminant concentrations (<level of detection-28 pg/g dw ΣPCB₁₄, 16–100 pg/g dw HCB) compared to outer marine sediments 630-880 pg/g dw ΣPCB₁₄, 530–770 pg/g dw HCB). There was a strong spatial gradient in sediment PCB and HCB concentrations with lowest concentrations in river estuaries and in front of marine-terminating glaciers and increasing concentrations toward the outer fjord. This suggests that rather than leading to increased concentrations, inputs of SPM from land lead to a dilution of contaminant concentrations in nearshore sediments. Preliminary estimates of SPM:water activity ratios suggest that terrestrial particles (with low contaminant concentrations) may have the potential to act as sorbents of dissolved contaminants in the coastal water column, with implications for bioavailability of POPs to the marine food web. There is concern that ongoing increases in fluxes of freshwater, sediments and associated terrestrial material (including contaminants) from land to the Arctic Ocean will lead to increased mobilization and transport of POPs to coastal ecosystems. However, the results of this study indicate that on Svalbard, inputs from land may in fact have the opposite effect, leading to reduced concentrations in coastal sediments and waters.
Показать больше [+] Меньше [-]Interspecific and intraspecific variation in organochlorine pesticides and polychlorinated biphenyls using non-destructive samples from Pygoscelis penguins
2021
Souza, Juliana Silva | Pacyna-Kuchta, Aneta Dorota | Teixeira da Cunha, Larissa Schmauder | Costa, Erli Schneider | Niedzielski, Przemysław | Machado Torres, João Paulo
As humans are present in Antarctica only for scientific and tourism-related purposes, it is often described as a pristine region. However, studies have identified measurable levels of Persistent Organic Pollutants (POPs), such as organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), in the Antarctic region. These are highly toxic anthropogenic compounds with tendency to travel long distances and reach remote environments, where they can bioaccumulate in the biota. Penguins are exposed to POPs mainly through their diet, which they partially eliminate via feathers. Species of the genus Pygoscelis occur around Antarctic continent and its surrounding regions, and can act as indicators of contaminants that reach the continent. Here, we report OCP and PCB levels in feathers of male and female penguins of P. adeliae, P. antarcticus and P. papua from King George Island, South Shetland Islands, Antarctica. Interspecific, sex- and body-size-related differences were investigated in the contamination profiles of PCBs and OCPs. Feather samples were collected from adult penguins (n = 41). Quantification of compounds was performed by gas chromatography-tandem mass spectrometry. The three Pygoscelis species presented similar contamination profiles, with higher concentrations of dichlorodiphenyltrichloroethane (∑DDT; 1.56–3.82 ng g⁻¹ dw), lighter PCB congeners (∑PCB: 11.81–18.65 ng g⁻¹ dw) and HCB (hexachlorobenzene: 1.65–4.06 ng g⁻¹ dw). Amongst the three penguin species, P. antarcticus had lower and P. papua higher concentrations of most of the compounds identified. We found interspecific differences in POPs accumulation as well as sex differences in POP concentrations. Our data indicate a small but significant positive correlation between body size and the concentrations of some compounds. Despite the overall low concentrations found, this study increases knowledge of the occurrence of POPs in Antarctic penguins, thereby reinforcing concerns that Antarctica, although remote and perceived to be protected, is not free from the impact of anthropogenic pollutants.
Показать больше [+] Меньше [-]Tetrachlorobenzoquinone exhibits immunotoxicity by inducing neutrophil extracellular traps through a mechanism involving ROS-JNK-NOX2 positive feedback loop
2021
Lv, Xuying | Liu, Zixuan | Xu, Lei | Song, Erqun | Song, Yang
Tetrachlorobenzoquinone (TCBQ) is a common metabolite of persistent organic pollutants pentachlorophenol (PCP) and hexachlorobenzene (HCB). Current reports on the toxicity of TCBQmainly focused on its reproductive toxicity, neurotoxicity, carcinogenicity and cardiovascular toxicity. However, the possible immunotoxicity of TCBQ remains unclear. The release of neutrophil extracellular traps (NETs) is a recently discovered immune response mechanism, however, excess NETs play a pathogenic role in various immune diseases. In an attempt to address concerns regarding the immunotoxicity of TCBQ, we adopted primary mouse neutrophils as the research object, explored the influence of TCBQ on the formation of NETs. The results showed that TCBQ could induce NETs rapidly in a reactive oxygen species (ROS)-dependent manner. Moreover, TCBQ promoted the phosphorylation of c-Jun N-terminal kinase (JNK) mitogen activated protein kinase (MAPK), but not p38 or extracellular signal related kinase (ERK) in neutrophils. Mechanistically, JNK activation enhanced the expression of NADPH oxidase enzyme 2 (NOX2), which further accelerated the generation of ROS and thus amplified the formation of NETs. The pharmacologic blockage of JNK or NOX2 effectively ameliorated TCBQ-induced ROS and NETs, implying that ROS-JNK-NOX2 positive feedback loop was involved in TCBQ-induced NETs. In conclusion, we speculated that targeting NETs formation would be a promising therapeutic strategy in modulating the immunotoxicity of TCBQ.
Показать больше [+] Меньше [-]Occurrence and sources of PCBs, PCNs, and HCB in the atmosphere at a regional background site in east China: Implications for combustion sources
2020
Mao, Shuduan | Zhang, Gan | Li, Jun | Geng, Xiaofei | Wang, Jiaqi | Zhao, Shizhen | Cheng, Zhineng | Xu, Yue | Li, Qilu | Wang, Yan
Multiple types of persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs), and hexachlorobenzene (HCB), can be unintentionally released from combustion or thermal industrial processes, which are speculated to be the main sources of these contaminants, as they were banned on production and use since several decades ago. In this study, concentrations and sources of 40 PCBs, 39 PCNs, and HCB were analyzed in air samples collected during the period 2012–2015 at a background site in east China. ΣPCBs, ΣPCNs, and HCB were in the range of 9–341 pg/m³, 6–143 pg/m³, and 14–522 pg/m³, respectively. Seasonal characteristics with high levels in winter and low levels in summer were observed for PCNs and HCB. PCBs also exhibited slightly higher levels in winter. Source apportionment was conducted, using polycyclic aromatic hydrocarbons (PAHs) as combustion sources indicator, combined with principal component analysis (PCA) and positive matrix factorization (PMF) model. The results indicated that the legacy of past produced and used commercial PCBs was the dominant contributor (∼56%) to the selected PCBs in the atmosphere in east China. PCNs were mainly emitted from combustion sources (∼64%), whereas HCB almost entirely originated from combustion process (>90%).
Показать больше [+] Меньше [-]Application of equilibrium passive sampling to profile pore water and accessible concentrations of hydrophobic organic contaminants in Danube sediments
2020
Belháčová-Minaříková, Michaela | Smedes, Foppe | Rusina, Tatsiana P. | Vrana, Branislav
Total concentrations of hydrophobic organic contaminants (HOCs) in sediment present a poor quality assessment parameter for aquatic organism exposure and environmental risk because they do not reflect contaminant bioavailability. The bioavailability issue of HOCs in sediments can be addressed by application of multi-ratio equilibrium passive sampling (EPS). In this study, riverbed sediment samples were collected during the Joint Danube Survey at 9 locations along the Danube River in 2013. Samples were ex-situ equilibrated with silicone passive samplers. Desorption isotherms were constructed, yielding two endpoints: pore water (CW:₀) and accessible (CAS:₀) concentration of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenyl ethers in sediment. CW:₀ concentrations of DDT and its breakdown products exhibited elevated levels in the low Danube, with the maximum in the river delta. Other investigated HOCs did not show any clear spatial trends along the river, and only a moderate CW:₀ variability. CAS:₀ in sediment ranged from 10 to 90% of the total concentration in sediment. CW:₀ was compared with freely dissolved concentration in the overlaying surface water, measured likewise by passive sampling. The comparison indicated potential compound release from sediment to the water phase for PAHs with less than four aromatic rings, and for remaining HOCs either equilibrium between sediment and water, or potential compound deposition in sediment. Sorption partition coefficients of HOC to organic carbon correlated well with octanol-water partition coefficients (KOW), showing stronger sorption of PAHs to sediment than that of PCBs and OCPs having equal logKOW. Comparison of CW:₀ values with European environmental quality standards indicated potential exceedance for hexachlorobenzene, fluoranthene and benzo[a]pyrene at several sites. The study demonstrates the utility of passive sampling as an innovative approach for risk-oriented monitoring of HOCs in river catchments.
Показать больше [+] Меньше [-]Examining the relationships between blubber steroid hormones and persistent organic pollutants in common bottlenose dolphins
2019
Galligan, Thomas M. | Balmer, Brian C. | Schwacke, Lori H. | Bolton, Jennie L. | Quigley, Brian M. | Rosel, Patricia E. | Ylitalo, Gina M. | Boggs, Ashley S.P.
Odontocete cetaceans bioaccumulate high concentrations of endocrine disrupting persistent organic pollutants (POPs), including dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyltrichloroethylene (DDE), and dichlorodiphenyldichloroethane (DDD) – collectively DDTs – but few studies have explored DDTs-mediated endocrine disruption in cetaceans. Herein, we use remotely collected blubber biopsies from common bottlenose dolphins (Tursiops truncatus) inhabiting a site with high localized DDTs contamination to study the relationships between DDTs exposure and steroid hormone homeostasis in cetaceans. We quantified blubber steroid hormone concentrations by liquid chromatography-tandem mass spectrometry and blubber POP concentrations by gas chromatography-mass spectrometry. We detected six steroid hormones in blubber, including progesterone (P4), 17-hydroxyprogesterone (17OHP4), androstenedione (AE), testosterone (T), cortisol (F), and cortisone (E). Sampled dolphins (n = 62) exhibited exposure to DDT, DDE, DDD, chlordanes (CHLDs), mirex, dieldrin, hexachlorobenzene, polychlorinated biphenyls (PCBs), and brominated diphenyl ethers (BDEs). Using principal components analysis (PCA), we determined that blubber DDTs primarily loaded to the first principal component (PC1) explaining 81.6% of the total variance in POP exposure, while the remaining POPs primarily loaded to the PC2 (10.4% of variance). PC1 scores were negatively correlated with blubber T in males and blubber F in females, suggesting that exposure to DDTs impacted androgen and corticosteroid homeostasis. These conclusions were further supported by observed negative correlations between T and o,p’-DDE, o,p’-DDD, and p,p’-DDD in males sampled in the fall, and between F and the six individual DDTs and ∑6DDTs in females. Overall, these results suggest that POP-mediated endocrine disruption may have occurred in this stock of dolphins, which could negatively impact their health and fitness. However, this study relied on uncontrolled incidental exposures, making it impossible to establish a causal relationship between DDTs exposure and endocrine effects. Importantly, this study demonstrates that remotely collected blubber biopsies are a useful matrix for studying endocrine disruption in marine mammals.
Показать больше [+] Меньше [-]Biota monitoring under the Water Framework Directive: On tissue choice and fish species selection
2018
Fliedner, Annette | Rüdel, Heinz | Lohmann, Nina | Buchmeier, Georgia | Koschorreck, Jan
The study addresses the topic of suitable matrices for chemical analysis in fish monitoring and discusses the effects of data normalization in the context of the European Water Framework Directive (WFD). Differences between species are considered by comparing three frequently monitored species of different trophic levels, i.e., chub (Squalius cephalus, n = 28), (bream, Abramis brama, n = 11), and perch (Perca fluviatilis, n = 19) sampled in the German Danube. The WFD priority substances dioxins, furans and dioxin-like polychlorinated biphenyls (PCDD/F + dl-PCB), polybrominated diphenyl ethers (PBDE), α-hexabromocyclododecane (α-HBCDD), hexachlorobenzene (HCB), mercury (Hg), and perfluorooctane sulfonic acid (PFOS) as well as non-dioxin-like (ndl)-PCB were analyzed separately in fillet and carcass and whole body concentrations were calculated. Hg was analyzed in individual fish fillets and carcasses, all other substances were determined in pool samples, which were compiled on the basis of fish size (3 chub pools, 1 bream pool, 2 perch pools). The data were normalized to 5% lipid weight (or 26% dry mass in the case of Hg and PFOS) for comparison between matrices and species.Hg concentrations were generally higher in fillet than in whole fish (mean whole fish-to-fillet ratio: 0.7) whereas all other substances were mostly higher in whole fish. In the case of lipophilic substances these differences leveled after lipid normalization.Significant correlations (p ≤ .05) were detected between Hg and fish weight and age. Hg concentrations varied least among younger fish. PCDD/F, dl-PCB, ndl-PCB, PBDE, α-HBCDD and HCB correlated significantly (p ≤ .05) with lipid concentrations. Fillet-to-whole fish conversion equations and/or conversion factors were derived for all substances except α-HCBDD. Although more data also for individual fish would be desirable the results are nevertheless a step on the way to translate fillet concentrations of priority substances to whole fish concentrations.
Показать больше [+] Меньше [-]