Уточнить поиск
Результаты 1-10 из 159
Occupational lead exposure on genome-wide DNA methylation and DNA damage
2022
Meng, Yu | Zhou, Mengyu | Wang, Tuanwei | Zhang, Guanghui | Tu, Yuting | Gong, Shiyang | Zhang, Yunxia | Christiani, David C. | Au, William | Liu, Yun | Xia, Zhao-lin
Lead (Pb) exposure can induce DNA damage and alter DNA methylation but their inter-relationships have not been adequately determined. Our overall aims were to explore such relationships and to evaluate underlying epigenetic mechanisms of Pb-induced genotoxicity in Chinese workers. Blood Pb levels (BLLs) were determined and used as individual's Pb-exposure dose and the Comet assay (i.e., % tail DNA) was conducted to evaluate DNA damage. In the screening assay, 850 K BeadChip sequencing was performed on peripheral blood from 10 controls (BLLs ≤100 μg/L) and 20 exposed workers (i.e., 10 DNA-damaged and 10 DNA-undamaged workers). Using the technique, differentially methylated positions (DMPs) between the controls and the exposed workers were identified. In addition, DMPs were identified between the DNA-undamaged and DNA-damaged workers (% tail DNA >2.14%). In our validation assay, methylation levels of four candidate genes were measured by pyrosequencing in an independent sample set (n = 305), including RRAGC (Ras related GTP binding C), USP1 (Ubiquitin specific protease 1), COPS7B (COP9 signalosome subunit 7 B) and CHEK1 (Checkpoint kinase 1). The result of comparisons between the controls and the Pb-exposed workers show that DMPs were significantly enriched in genes related to nerve conduction and cell cycle. Between DNA-damaged group and DNA-undamaged group, differentially methylated genes were enriched in the pathways related to cell cycle and DNA integrity checkpoints. Additionally, methylation levels of RRAGC and USP1 were negatively associated with BLLs (P < 0.05), and the former mediated 19.40% of the effect of Pb on the % tail DNA. These findings collectively indicated that Pb-induced DNA damage was closely related to methylation of genes in cell cycle regulation, and methylation levels of RRAGC were involved in Pb-induced genotoxicity.
Показать больше [+] Меньше [-]A meta-analysis of microbial community structures and associated metabolic potential of municipal wastewater treatment plants in global scope
2020
Tian, Lu | Wang, Lin
Microbial community in wastewater treatment plants (WWTPs) are affected by various environmental factors. The microbial communities from different WWTPs around world were compared by meta-analysis of the published high-throughput sequencing data of 16S rRNA of these WWTPs, the various environmental factors considered. Community richness indexes showed significant difference between altitude groups, and there was no latitudinal diversity gradient in WWTPs’ microbiomes. Climate was the most important influential factor and process was the second factor, and latitude and altitude contributed 5.51% and 4.78% of the overall variance of the data separately. Three significantly enriched bacterial communities in latitude and altitude respectively were showed by ternary plots. Mantel test illustrated that microbial community was strongly correlated with dissolved oxygen, temperature and pollutants concentrations. The prediction of potential functions revealed that microbial function structures were more stable than community structures. Some dominant bacteria in WWTPs have potential pathogenicity may pose serious threat to the environment and human health.
Показать больше [+] Меньше [-]Microbial characteristic and bacterial community assessment of sediment sludge upon uranium exposure
2020
Zeng, Taotao | Mo, Guanhai | Hu, Qing | Wang, Guohua | Liao, Wei | Xie, Shuibo
The microbial characteristics and bacterial communities of sediment sludge upon different concentrations of exposure to uranium were investigated by high solution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and high-throughput sequencing. After exposure to initial uranium concentrations of 10–50 μM for 24 h in synthetic wastewater, the removal efficiencies of uranium reached 80.7%–96.5%. The spherical and short rod bacteria were dominant in the sludge exposed to uranium. HRTEM-EDS and XPS analyses indicated that reduction and adsorption were the main mechanisms for uranium removal. Short-term exposure to low concentrations of uranium resulted in a decrease in bacterial richness but an increase in diversity. A dramatic change in the composition and abundances of the bacterial community were present in the sediment sludge exposed to uranium. The highest removal efficiency was identified in the sediment sludge exposed to 30 μM uranium, and the dominant bacteria included Acinetobacter (44.9%), Klebsiella (20.0%), Proteiniclasticum (6.7%), Enterobacteriaceae (6.6%), Desulfovibrio (4.4%), Porphyromonadaceae (4.1%), Comamonas (2.4%) and Sedimentibacter (2.3%). By comparison to the inoculum sediment sludge, exposure to uranium caused a substantial difference in the majority of bacterial abundance.
Показать больше [+] Меньше [-]Variations in bacterioplankton communities in aquaculture ponds and the influencing factors during the peak period of culture
2020
Fan, Limin | Hu, Gengdong | Qiu, Liping | Meng, Shunlong | Wu, Wei | Zheng, Yao | Song, Chao | Li, Dandan | Chen, Jiazhang
An increase in nutrient input may disturb the bacterioplankton communities in freshwater aquaculture ponds during the peak period of culture. Water samples were collected from ponds of three cultivated species. After the samples were filtered and total DNA was extracted, Illumina high-throughput sequencing was used to profile the spatiotemporal distributions in bacterioplankton communities, the belt diversity, and the influencing factors during this period of time. The results showed that Proteobacteria, Cyanobacteria, Bacteroidetes, and Actinobacteria were the dominant phyla. Biological differences in cultivated species were the main influencing factors that shaped bacterioplankton communities. Monthly variations and thermal stratification provided little and no contribution to bacterioplankton communities, respectively. CODmn, Chla, and TN were the most appropriate parameters to describe the environmental interpretation of bacterial ordinations, and CODmn was the predominant factor. In addition, the higher similarity between CODmn and Chla, shown by clustering analysis, indicated that the algae-bacteria symbiotic system may have an important role in material circulation in freshwater aquaculture pond water during the peak period of culture. The present study has helped to elucidate the biological characteristics of aquaculture tail water, and enriched the basic data provided by bacterioplankton studies.
Показать больше [+] Меньше [-]Sulfidated nanoscale zero-valent iron is an efficient material for the removal and regrowth inhibition of antibiotic resistance genes
2020
Zhang, Wen-Zhi | Gao, Jing-Feng | Duan, Wan-Jun | Zhang, Da | Jia, Jing-Xin | Wang, Youwei
Antibiotic resistance genes (ARGs) and mobile gene elements (MGEs), the emerging genetic contaminants, are regarded as severe risks to public health for impairing the inactivation efficacy of antibiotics. Secondary effluents from wastewater treatment plants are the hotspots for spreading these menaces. Herein, sulfidated nanoscale zero-valent iron (S-nZVI) was occupied to remove ARGs and MGEs in secondary effluents and weaken the regrowth capacity of their bacterial carriers. The effects of S/Fe molar ratios (S/Fe), initial pH and dosages on 16S rRNA and ARGs removal were also investigated. Characterization, mass balance and scavenging experiments were conducted to explore the mechanisms of the gene removal. Quantitative PCR (qPCR) and high throughput fluorescence qPCR showed more than 3 log unit of 16S rRNA and seven out of 10 ARGs existed in secondary effluent could be removed after S-nZVI treatment. The mechanisms might be that DNA accepted the electron provided by the Fe⁰ core of S-nZVI after being adsorbed onto S-nZVI surface, causing the decrease of 16S rRNA, ARGs and lost their regrowth capacity, especially for typical MGE (intI1) and further inhibiting the vertical gene transfer (VGT) and intI1-induced horizontal gene transfer (HGT). Fe⁰ core was oxidized to iron oxides and hydroxides at the same time. High throughput sequencing, network analysis and variation partitioning analysis revealed the complex correlations between bacteria and ARGs in secondary effluent, S/Fe could directly influence ARGs variations, and bacterial genera made the greatest contribution to ARGs variations, followed by MGEs and operational parameters. As a result, S-nZVI could be an available reductive approach to deal with bacteria and ARGs.
Показать больше [+] Меньше [-]A non-invasive method to monitor marine pollution from bacterial DNA present in fish skin mucus
2020
Montenegro, Diana | Astudillo-García, Carmen | Hickey, Tony | Lear, Gavin
Marine coastal contamination caused by human activity is a major issue worldwide. The implementation of effective pollution monitoring programs, especially in coastal areas, is important and urgent. The use of biological, physiological, or biochemical measurements to monitor the impacts of pollution has garnered increasing interest, particularly for the development of new non-invasive tools to assess water pollution. Fish skin mucus is in direct contact with the marine environment, making it a favourable microenvironment for the formation of biofilm bacterial communities. In this study, we developed a non-invasive technique, sampling fish skin mucus to determine and analyse bacterial community composition using next-generation sequencing. We hypothesised that bacterial communities associated with the skin mucus of a common harbour benthic blennioid triplefin fish, Forsterygion capito, would reflect conditions of different marine environments. We detected clear differences in bacterial community alpha-diversity between contaminated and reference sites. Beta-diversity analysis also revealed differences in the bacterial community structure of the skin mucus of fish inhabiting different geographical areas. The relative abundance of different bacterial orders varied among sites, as determined by linear discriminant analysis (LDA) and effect size (LEfSe) analyses. The observed variation in bacterial community compositions correlated more strongly with variation in hydrocarbons than to various metal concentrations. Using advanced DNA sequencing technologies, we have developed a novel non-invasive, low-cost and effective tool to monitor the impacts of pollution through analysis of the bacterial communities associated with fish skin mucus.
Показать больше [+] Меньше [-]Response of the bacterial community of Propylea japonica (Thunberg) to Cry2Ab protein
2019
Zhang, Shuai | Luo, Junyu | Jiang, Weili | Wu, Linke | Zhang, Lijuan | Ji, Jichao | Wang, Li | Ma, Yan | Cui, Jinjie
Propylea japonica is a very important predator in agricultural ecosystems, which could be exposed to Bt protein. In this study, the bacterial community of P. japonica fed with normal food and food containing Cry2Ab protein was characterized for the first time using qPCR and high-throughput sequencing approaches. Results showed no effect of Cry2Ab on P. japonica development and reproduction. The most abundant bacterial phylum was Firmicutes, and the most abundant genus was Staphylococcus. The total bacteria copy number was not significantly different across four larval stages. Bacteria species composition was gathered more closely in feed on sucrose solution (sucrose-fed) than in larvae only fed on pea aphid (aphid-fed), the diversity indices of some operational taxonomic unit (OTU) were significantly different between sucrose-fed and aphid-fed samples. Different instar larval stages of P. japonica fed with sucrose solution containing Cry2Ab Bt protein and found no effect on microbial community composition and total bacteria copy numbers. However, effects on relative abundance of microbes, copy numbers of Corynebacterium 1 and Glutamicibacter arilaitensis were observed significantly lower in Bt-fed first and fourth larval stages. Low and high concentrations of Cry2Ab protein altered the microbial abundance relative to sucrose-fed P. japonica and copy numbers of G. arilaitensis and Staphylococcus xylosus were significantly lower in Bt-fed samples than control sucrose-fed. Our results are the first report showing that feeding on Cry2Ab protein does not alter microbial species composition in P. japonica, but effects gene copy number of some dominant bacteria. Further investigations are needed to assess the effect of copy number change on P. japonica.
Показать больше [+] Меньше [-]Response of sediment bacterial community to triclosan in subtropical freshwater benthic microcosms
2019
The response of sediment bacterial communities in subtropical freshwater benthic microcosms to sediment-associated triclosan (TCS; 28 d exposure) was analysed using Illumina high-throughput sequencing. This study highlights the interactive effects of TCS and the presence of benthic macroinvertebrates (Limnodrilus hoffmeisteri and Viviparidae bellamya) on sediment bacterial communities. Our results show that TCS alone significantly altered the taxonomic composition and decreased alpha diversity of sediment bacterial communities at concentrations ≥80 μg TCS/g dry weight (dw) sediment (sed). Regarding dominant phyla, TCS significantly reduced the relative abundance of Bacteroidetes and Firmicutes at these concentrations, whereas the relative abundance of Chloroflexi and Cyanobacteria increased. In the presence of benthic macroinvertebrates, the sediment bacterial community was affected by 8 μg TCS/g dw sed as well. However, the presence of benthic macroinvertebrates did not cause measurable changes to bacterial community in unspiked (i.e., control) sediment. These results indicate that TCS alone would not alter the sediment bacterial community at environmentally relevant concentrations (up till 8 μg/g dw sed), but may have an effect in combination with the presence of benthic macroinvertebrates. Therefore, we recommend to include benthic macroinvertebrates when assessing the response of sediment bacterial communities during exposure to environmental stress such as organic contaminants.
Показать больше [+] Меньше [-]A PAH-degrading bacterial community enriched with contaminated agricultural soil and its utility for microbial bioremediation
2019
Lü, Chao | Hong, Yang | Liu, Juan | Gao, Yanzheng | Ma, Zhao | Yang, Bing | Ling, Wanting | Waigi, Michael Gatheru
A bacterial community was enriched with polycyclic aromatic hydrocarbons (PAHs) polluted soil to better study PAH degradation by indigenous soil bacteria. The consortium degraded more than 52% of low molecular weight and 35% of high molecular weight (HMW) PAHs during 16 days in a soil leachate medium. 16S rRNA gene high-throughput sequencing and quantitative polymerase chain reaction analyses for alpha subunit genes of ring-hydroxylating-dioxygenase (RHDα) suggested that Proteobacteria and Actinobacteria at the phylum level, Pseudomonas, Methylobacillus, Nocardioides, Methylophilaceae, Achromobacter, Pseudoxanthomonas, and Caulobacter at the generic level were involved in PAH degradation and might have the ability to carry RHDα genes (nidA and nahAc). The community was selected and collected according to biomass and RHDα gene contents, and added back to the PAH-polluted soil. The 16 EPA priority PAHs decreased from 95.23 to 23.41 mg kg⁻¹ over 35 days. Compared with soil without the introduction of this bacterial community, adding the community with RHDα genes significantly decreased soil PAH contents, particularly HMW PAHs. The metabolic rate of PAHs in soil was positively correlated with nidA and nahAc gene contents. These results indicate that adding an indigenous bacterial consortium containing RHDα genes to contaminated soil may be a feasible and environmentally friendly method to clean up PAHs in agricultural soil.
Показать больше [+] Меньше [-]Exposure to microplastics lowers arsenic accumulation and alters gut bacterial communities of earthworm Metaphire californica
2019
Wang, Hong-Tao | Ding, Jing | Xiong, Chan | Zhu, Dong | Li, Gang | Jia, Xiao-Yu | Zhu, Yong-Guan | Xue, Xi-Mei
Ubiquitous contamination of microplastics and arsenic in soil ecosystems can induce many health issues to nontarget soil organisms, and will also cause many potential threats to the gut bacterial communities of soil fauna. However, the changes in the gut bacterial communities of soil fauna after exposure to both microplastics and arsenic remain unknown. In this study, the toxicity and effects on the gut microbiota of earthworm Metaphire californica caused by the combined exposure of microplastics and arsenic were examined by using arsenic species analysis and high throughput sequencing of gut microbiota. Results showed that total arsenic and arsenic species in the earthworm gut and body tissues after exposure to combination of microplastics with arsenate (As(V)) were significantly different from that treated with As(V) alone. Microplastics lessened the accumulation of total arsenic and the transformation rate of As(V) to arsenite (As(III)). Microplastics alleviated the effect of arsenic on the gut microbiota possibly via adsorbing/binding As(V) and lowering arsenic bioavailability, thus prevented the reduction of As(V) and accumulation of total arsenic in the gut which resulted in a lower toxicity on the earthworm. The study broadens our understanding of the ecotoxicity of microplastics with other pollutants on the soil animals and on their gut microbiota.
Показать больше [+] Меньше [-]