Уточнить поиск
Результаты 21-30 из 3,620
A rapid and reliable immunochromatographic strip for detecting paraquat poinsoning in domestic water and real human samples Полный текст
2022
Fu, Guanyan | Duan, Yu | Yi, Weijing | Zhang, Shun | Liang, Wenbin | Li, Brenda W. L. (Brenda Wai Ling) | Yan, Huifang | Wu, Banghua | Fu, Sheng | Zhang, Jing | Zhang, Gen | Wang, Guixue | Liu, Yongsheng | Xu, Shangcheng
Paraquat (PQ) is one of the most commonly used herbicides, but it has polluted the environment and threatened human health through extensive and improper usage. Here, a new naked-eye PQ immunochromatographic strip was developed to recognize PQ in domestic water and real human samples within 10 min based on a novel custom-designed anti-PQ antibody. The PQ test strip could recognize PQ at a concentration as low as 10 ng/ml, reaching the high-efficiency time-of-flight mass spectrometry detection level and identifying trace amounts of PQ in samples treated with a diquat (DQ) and PQ mixture. Notably, both the performance evaluation and clinical trial of the proposed PQ strips were validated in multiple hospitals and public health agencies. Taken together, our study firstly provide the clinical PQ-targeted colloidal gold immunochromatographic test strip designed both for environment water and human sample detection with multiple advantages, which are ready for environmental monitoring and clinical practice.
Показать больше [+] Меньше [-]A critical review of advances in reproductive toxicity of common nanomaterials to Caenorhabditis elegans and influencing factors Полный текст
2022
Yao, Yongshuai | Zhang, Ting | Tang, Meng
In recent decades, nanotechnology has rapidly developed. Therefore, there is growing concern about the potential environmental risks of nanoparticles (NPs). Caenorhabditis elegans (C. elegans) has been used as a powerful tool for studying the potential ecotoxicological impacts of nanomaterials from the whole animal level to single cell level, especially in the area of reproduction. In this review, we discuss the reproductive toxicity of common nanomaterials in C. elegans, such as metal-based nanomaterial (silver nanoparticles (NPs), gold NPs, zinc oxide NPs, copper oxide NPs), carbon-based nanomaterial (graphene oxide, multi-walled carbon nanotubes, fullerene nanoparticles), polymeric NPs, silica NPs, quantum dots, and the potential mechanisms involved. This insights into the toxic effects of existing nanomaterials on the human reproductive system. In addition, we summarize how the physicochemical properties (e.g., size, charge, surface modification, shape) of nanomaterials influence their reproductive toxicity. Overall, using C. elegans as a platform to develop rapid detection techniques and prediction methods for nanomaterial reproductive toxicity is expected to reduce the gap between biosafety evaluation of nanomaterials and their application.
Показать больше [+] Меньше [-]Endocrine disrupting chemicals impact on ovarian aging: Evidence from epidemiological and experimental evidence Полный текст
2022
Ding, Ting | Yan, Wei | Zhou, Ting | Shen, Wei | Wang, Tian | Li, Milu | Zhou, Su | Wu, Meng | Dai, Jun | Huang, Kecheng | Zhang, Jinjin | Chang, Jiang | Wang, Shixuan
Endocrine-disrupting chemicals (EDCs) are ubiquitous in daily life, but their harmful effects on the human body have not been fully explored. Recent studies have shown that EDCs exposure could lead to infertility, menstrual disorder and menopause, resulting in subsequent effects on female health. Therefore, it is of great significance to clarify and summarize the impacts of EDCs on ovarian aging for explaining the etiology of ovarian aging and maintaining female reproductive health. Here in this review, we focused on the impacts of ten typical environmental contaminants on the progression of ovarian aging during adult exposure, including epidemiological data in humans and experimental models in rodents, with their clinical phenotypes and underlying mechanisms. We found that both persistent (polychlorinated biphenyls, perfluoroalkyl and polyfluoroalkyl substances) and non-persistent (phthalates) EDCs exposure could increase an overall risk of ovarian aging, leading to the diminish of ovarian reserve, decline of fertility or fecundity, irregularity of the menstrual cycle and an earlier age at menopause, and/or premature ovarian insufficiency/failure in epidemiological studies. Among these, the loss of follicles can also be validated in experimental studies of some EDCs, such as BPA, phthalates, parabens and PCBs. The underlying mechanisms may involve the impaired ovarian follicular development by altering receptor-mediated pro-apoptotic pathways, inducing signal transduction and cell cycle arrest and epigenetic modification. However, there were inconsistent results in the impacts on fertility/fecundity, menstrual/estrous cycle and hormone changes response to different EDCs, and differences between human and animal studies. Our review summarizes the current state of knowledge on ovarian disrupters, highlights their risks to ovarian aging and identifies knowledge gaps in humans and animals. We therefore propose that females adopt healthy lifestyle changes to minimize their exposure to both persistent and non-persistent chemicals, that have the potential damage to their reproductive function.
Показать больше [+] Меньше [-]Effect of sulfate application on inhibition of arsenic bioaccumulation in rice (Oryza sativa L.) with consequent health risk assessment of cooked rice arsenic on human: A pot to plate study Полный текст
2022
Arsenic (As) in rice is posing a serious threat worldwide and consumption of As contaminated rice by human is causing health risks. A pot experiment with different levels of sulfate dosage (0, 20, 40, 60 and 80 mg/kg) was set up in this study to explore the influence of sulfate fertilizer on rice plant growth, yield, and As accumulation in rice grain. Apart from As bioaccumulation in rice grains, the As fraction of cooked rice was quantified, and the health risks associated with cooked rice consumption were also investigated. The sulfate application significantly (p ≤ 0.05) enhanced the chlorophyll, tiller number, grains per panicle, grain and biomass yield under As stressed condition. The sulfate application also reduced the oxidative stress and antioxidant activity in rice plants. Sulfate fertigation improved the accumulation of total sulfur (S) and reduced the uptake and translocation of As in rice plants. Arsenic concentration in rice grain was reduced by 50.1% in S80 treatment (80 mg of sulfate/kg of soil) as compared to S0 set. The reduction percentage of As in cooked parboiled and sunned rice with correspond to raw rice ranged from 55.9 to 74% and 40.3–60.7%, respectively. However, the sulfate application and cooking of parboiled rice reduced the potential non-cancer and cancer risk as compared to sunned rice. The S80 treatment and cooking of parboiled rice reduce the As exposure for both children and adults by 51% as compared to cooked sunned rice under S80 treatment and this trend was similar for all treatments. Therefore, sulfate application in soil can be recommended to produce safer rice grains and subsequent cooking of parboiled rice grain with low-As contaminated water need to be done to avoid any potential health risk in As endemic areas.
Показать больше [+] Меньше [-]Glycine ameliorates MBP-induced meiotic abnormalities and apoptosis by regulating mitochondrial-endoplasmic reticulum interactions in porcine oocytes Полный текст
2022
Gao, Lepeng | Zhang, Chang | Yu, Sicong | Liu, Shuang | Wang, Guoxia | Lan, Hainan | Zheng, Xin | Li, Suo
Monobutyl phthalate (MBP) is the main metabolite of dibutyl phthalate (DBP) in vivo. MBP has a stable structure, can continuously accumulate in living organisms, and has the potentially to harm animal and human reproductive function. In the ovarian follicle microenvironment, MBP may lead to defects in follicular development and steroid production, abnormal meiotic maturation, impaired ovarian function and other reproductive deficits. In this study, SMART-seq was used to investigate the effects of MBP exposure on the in vitro maturation (IVM) and development of porcine oocytes. The results showed that differentially expressed genes after MBP exposure were enriched in the biological processes cytoskeleton, cell apoptosis, endoplasmic reticulum (ER) and mitochondria. Glycine (Gly) improved the developmental potential of porcine oocytes by regulating mitochondrial and ER function. The effect of Gly in protecting oocytes against MBP-induced damage was studied. The results showed that the addition of Gly significantly decreased the rate of MBP-induced spindle abnormalities, decreased the frequency of MBP-induced mitochondria-associated ER membrane (MAM) interactions, and downregulated the protein and gene expression of the linkage molecules Mitofusin 1 (MFN1) and Mitofusin 2 (MFN2) in the MAM. Additionally, treatment with Gly restored the distribution of the 1,4,5-triphosphate receptor 1 (IP₃R1) and voltage-dependent anion channel 1 (VDAC1), further decreasing the intracellular free calcium concentration ([Ca²⁺]ᵢ) levels and mitochondrial Ca²⁺ ([Ca²⁺]ₘ) , increasing the ER Ca²⁺ ([Ca²⁺]ER) levels, and thus significantly increasing the ER levels and mitochondrial membrane potential (ΔΨ m). Gly also decreased the levels of reactive oxygen species (ROS) and increased the levels of Glutathione (GSH), oocyte apoptosis-related indicators (Caspase-3 activity and Annexin V) and oocyte apoptosis-related genes (BAX, Caspase 3 and AIFM1). Our results suggest that Gly can ameliorate microtubule cytoskeleton abnormalities and improve oocyte maturation by reducing the defective mitochondrial–ER interactions caused by MBP exposure in vitro.
Показать больше [+] Меньше [-]Decrease in life expectancy due to COVID-19 disease not offset by reduced environmental impacts associated with lockdowns in Italy Полный текст
2022
Rugani, Benedetto | Conticini, Edoardo | Frediani, Bruno | Caro, Dario
The consequence of the lockdowns implemented to address the COVID-19 pandemic on human health damage due to air pollution and other environmental issues must be better understood. This paper analyses the effect of reducing energy demand on the evolution of environmental impacts during the occurrence of 2020-lockdown periods in Italy, with a specific focus on life expectancy. An energy metabolism analysis is conducted based on the life cycle assessment (LCA) of all monthly energy consumptions, by sector, category and province area in Italy between January 2015 to December 2020. Results show a general decrease (by ∼5% on average) of the LCA midpoint impact categories (global warming, stratospheric ozone depletion, fine particulate matter formation, etc.) over the entire year 2020 when compared to past years. These avoided impacts, mainly due to reductions in fossil energy consumptions, are meaningful during the first lockdown phase between March and May 2020 (by ∼21% on average). Regarding the LCA endpoint damage on human health, ∼66 Disability Adjusted Life Years (DALYs) per 100,000 inhabitants are estimated to be saved. The analysis shows that the magnitude of the officially recorded casualties is substantially larger than the estimated gains in human lives due to the environmental impact reductions. Future research could therefore investigate the complex cause-effect relationships between the deaths occurred in 2020 imputed to COVID-19 disease and co-factors other than the SARS-CoV-2 virus.
Показать больше [+] Меньше [-]Attributed radiative forcing of air pollutants from biomass and fossil burning emissions Полный текст
2022
Jiang, Ke | Fu, Bo | Luo, Zhihan | Xiong, Rui | Men, Yatai | Shen, Huizhong | Li, Bengang | Shen, Guofeng | Tao, Shu
Energy is vital to human society but significantly contributes to the deterioration of environmental quality and the global issue of climate change. Biomass and fossil fuels are important energy sources but have distinct pollutant emission characteristics during the burning process. This study aimed at attributing radiative forcing of climate forcers, including greenhouse gases but also short-lived climate pollutants, from the burning of fossil and biomass fuels, and the spatiotemporal characteristics. We found that air pollutant emissions from the burning process of biofuel and fossil fuels induced RFs of 68.2 ± 36.8 mW m⁻² and 840 ± 225 mW m⁻², respectively. The relatively contribution of biomass burning emissions was 7.6% of that from both fossil and biofuel combustion processes, while its contribution in energy supply was 11%. These relative contributions varied obviously across different regions. The per unit energy consumption of biomass fuel in the developed regions, such as North America (0.57 ± 0.33 mW m⁻²/10⁷TJ) and Western Europe (0.98 ± 0.79 mW m⁻²/10⁷TJ), had higher impacts of combustion emission related RFs compared to that of developing regions, like China (0.40 ± 0.26 mW m⁻²/10⁷TJ), and South and South-East Asia (0.31 ± 0.71 mW m⁻²/10⁷TJ) where low efficiency biomass burning in residential sector produced significant amounts of organic matter that had a cooling effect. Note that the study only evaluated fuel combustion emission related RFs, and those associated with the production of fuels and land use change should be studied later in promoting a comprehensive understanding on the climate impacts of biomass utilization.
Показать больше [+] Меньше [-]Wild fish and seafood species in the western Mediterranean Sea with low safe mercury concentrations Полный текст
2022
Capodiferro, Marco | Marco, Esther | Grimalt, Joan O.
Wild fish and seafood species in the western Mediterranean Sea with low safe mercury concentrations Полный текст
2022
Capodiferro, Marco | Marco, Esther | Grimalt, Joan O.
A total of 1345 specimens belonging to 58 different species of wild fish and seafood from the western Mediterranean Sea were analyzed to assess total mercury levels and to estimate which species meet the EU recommendations for human consumption (0.5 μg g⁻¹ ww) in all cases. All fish species were caught off the Mediterranean coasts and intended for human consumption. All specimens were collected from local markets located in Spain, Italy and France that sell fish caught by local fishermen (Eivissa, Menorca, Mallorca, Alacant, L'Ampolla, Ametlla de Mar, Marseille, Genoa, Civitavecchia, Alghero) at different time periods. Mercury concentrations were measured by thermal decomposition-gold amalgamator-atomic absorption spectrometry. Only thirteen species were found that did not exceed 0.5 μg g⁻¹ ww in any specimen analyzed. These safe species were sardines (Sardina pilchardus), anchovies (Engraulis encrasicolus), blue whiting (Micromesistius poutassou), picarel (Spicara smaris), blackspot seabream (Pagellus bogaraveo), gilthead seabream (Sparus aurata), pearly razorfish (Xyrichtys novacula), surmullet (Mullus surmuletus), painted comber (Serranus scriba), brown meagre (Sciaena umbra), salema (Sarpa salpa), common dolphinfish (Coryphaena hippurus) and squid (Loligo vulgaris). These species occupy different trophic levels, have different lengths and average weights, but show a low mercury concentration than others living in the same environments. Potential human consumption of these species as sole source of fish would imply estimated weekly intakes representing between 49% and 70% of the recommended provisional tolerable weekly intake of methylmercury in the worst case. Health authorities should pay specific attention to species that do not meet EU thresholds and make appropriate precautionary health recommendations, especially for pregnant women and children.
Показать больше [+] Меньше [-]Wild fish and seafood species in the western Mediterranean Sea with low safe mercury concentrations Полный текст
2022
Capodiferro, Marco | Marco, Esther | Grimalt, Joan O. | European Commission | 0000-0002-6054-6713 | 0000-0002-7391-5768 | Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72]
A total of 1345 specimens belonging to 58 different species of wild fish and seafood from the western Mediterranean Sea were analyzed to assess total mercury levels and to estimate which species meet the EU recommendations for human consumption (0.5 μg g-1 ww) in all cases. All fish species were caught off the Mediterranean coasts and intended for human consumption. All specimens were collected from local markets located in Spain, Italy and France that sell fish caught by local fishermen (Eivissa, Menorca, Mallorca, Alacant, L'Ampolla, Ametlla de Mar, Marseille, Genoa, Civitavecchia, Alghero) at different time periods. Mercury concentrations were measured by thermal decomposition-gold amalgamator-atomic absorption spectrometry. Only thirteen species were found that did not exceed 0.5 μg g-1 ww in any specimen analyzed. These safe species were sardines (Sardina pilchardus), anchovies (Engraulis encrasicolus), blue whiting (Micromesistius poutassou), picarel (Spicara smaris), blackspot seabream (Pagellus bogaraveo), gilthead seabream (Sparus aurata), pearly razorfish (Xyrichtys novacula), surmullet (Mullus surmuletus), painted comber (Serranus scriba), brown meagre (Sciaena umbra), salema (Sarpa salpa), common dolphinfish (Coryphaena hippurus) and squid (Loligo vulgaris). These species occupy different trophic levels, have different lengths and average weights, but show a low mercury concentration than others living in the same environments. Potential human consumption of these species as sole source of fish would imply estimated weekly intakes representing between 49% and 70% of the recommended provisional tolerable weekly intake of methylmercury in the worst case. Health authorities should pay specific attention to species that do not meet EU thresholds and make appropriate precautionary health recommendations, especially for pregnant women and children. | This research was supported by Neurosome, a H2020 Marie Skłodowska-Curie Actions project (grant agreement number 766251), and PARC (HLTH-2021-ENVHLTH-3:101057014) from the European Commission. | Peer reviewed
Показать больше [+] Меньше [-]Phthalates released from microplastics inhibit microbial metabolic activity and induce different effects on intestinal luminal and mucosal microbiota Полный текст
2022
Yan, Zehua | Zhang, Shenghu | Zhao, Yonggang | Yu, Wenyi | Zhao, Yanping | Zhang, Yan
The intestine is not only the main accumulation organ of microplastics (MPs), but also the intestinal environment is very conductive to the release of additives in MPs. However, the kinetics of release process, influence factors, and the related effects on gut microbiota remain largely unknown. In this study, a mucosal-simulator of the human intestinal microbial ecosystem (M-SHIME) was used to investigate the influence of gut microbiota on the release of phthalates (PAEs) from MPs and the effects of MPs on the intestinal luminal microbiota and mucosal microbiota. We found that di-(2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DBP), and dimethyl phthalate (DMP) were the dominant PAEs released in the gut. Gut microbiota accelerated the release of PAEs, with the time to reach the maximum release was shortened from 7 days to 2 days. Moreover, MPs induced differential effects on luminal microbiota and mucosal microbiota. Compared with mucosal microbiota, the luminal microbiota was more susceptible to the leaching of PAEs from MPs, as evidenced by more microbiota alterations. MPs also inhibited the metabolic activity of intestinal flora based on the reduced production of short chain fatty acids (SCFA). These effects were mainly contributed by the release of PAEs. Acidaminococcus and Morganella were simultaneously correlated to the release of PAEs and the inhibition of metabolic activity of intestinal microbiota and can be used as indicators for the intestinal exposure of MPs and additives.
Показать больше [+] Меньше [-]A novel human biomonitoring study by semiconductor gas sensors in Exposomics: investigation of health risk in contaminated sites Полный текст
2022
Longo, Valentina | Forleo, Angiola | Radogna, Antonio Vincenzo | Siciliano, P. (Pietro) | Notari, Tiziana | Pappalardo, Sebastiana | Piscopo, Marina | Montano, Luigi | Capone, Simonetta
Two areas in central-southern Italy Land of Fires in Campania and Valley of Sacco river in Lazio are known to be contaminated sites, the first due to illegal fly-tipping and toxic fires, and the second due to an intensive industrial exploitation done by no-scruple companies and crooked public administration offices with dramatic consequences for environment and resident people. The work is intended to contribute to Human BioMonitoring (HBM) studies conducted in these areas on healthy young male population by a semiconductor gas sensor array trained by SPME-GC/MS. Human semen, blood and urine were investigated. The fingerprinting of the Volatile Organic Compounds (VOCs) by a gas sensors system allowed to discriminate the different contamination of the two areas and was able to predict the chemical concentration of several VOCs identified by GC/MS.
Показать больше [+] Меньше [-]