Уточнить поиск
Результаты 1-10 из 390
Spatial and Seasonal Trend of Trace Metals and Ecological Risk Assessment along Kanyakumari Coastal Sediments, Southern India Полный текст
2016
K, Gurumoorthi | R, Venkatachalapathy
The concentration of selected trace metals (Fe, Cd, Cu, Pb, and Zn) in 30surface sediments were measured using Atomic Absorption Spectrometer to investigatethe spatial and seasonal variations of trace metals along Kanyakumari coast, India. Toassess the environmental risk of trace metals, enrichment factor, geo-accumulation index,pollution load index, and ecological risk index have been calculated. According to thepollution load index and geo-accumulation index (Igeo) values, Kanyakumari coastalsediments were unpolluted by Fe, Cu, Pb, and Zn, whereas moderately polluted by Cdwith low to moderate ecological risk. The existence of the high hydrodynamic conditionduring the southwest monsoon is more favorable to the transport of sediments andenhance the accumulation of metals, whereas during the northeast monsoon theaccumulation of metals is less. The baseline data for spatial distribution and seasonalvariation of trace metals and their controlling factors found in this study will be useful forpollution monitoring program along the Kanyakumari coast.
Показать больше [+] Меньше [-]Phytoplankton distribution and productivity in a highly turbid, tropical coastal system (Bach Dang Estuary, Vietnam) Полный текст
2011
Rochelle-Newall, E.J. | Chu, V.T. | Pringault, O. | Amouroux, David | Arfi, Robert | Bettarel, Y. | Bouvier, T. | Bouvier, C. | Got, P. | Nguyen, T.M.H. | Mari, Xavier | Navarro, Pablo | Duong, T.N. | Cao, T.T.T. | Pham, T.T. | Ouillon, S. | Torréton, J.-P. | Biogéochimie et écologie des milieux continentaux (Bioemco) ; École normale supérieure - Paris (ENS-PSL) ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Université Pierre et Marie Curie - Paris 6 (UPMC)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS) | Institute of Marine Environment and Resources, Haiphong (IMER) ; VAST | Ecosystèmes lagunaires : organisation biologique et fonctionnement (ECOLAG) ; Université Montpellier 2 - Sciences et Techniques (UM2)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National de la Recherche Scientifique (CNRS) | Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM) ; Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS) | Institut pluridisciplinaire de recherche sur l'environnement et les matériaux (IPREM) ; Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS) | Echanges Côte-Large (ECOLA) ; Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS) | This work was financed by the EC2CO project 'HAIPHONG', and Grants from the French IRD, CNRS, Groupement De Recherche (GDR) 2476 Réseaux Trophiques Pélagiques, and the Vietnam Academy of Science and Technology (VAST).
International audience | Phytoplankton diversity, primary and bacterial production, nutrients and metallic contaminants were measured during the wet season (July) and dry season (March) in the Bach Dang Estuary, a sub-estuary of the Red River system, Northern Vietnam. Using canonical correspondence analysis we show that phytoplankton community structure is potentially influenced by both organometallic species (Hg and Sn) and inorganic metal (Hg) concentrations. During March, dissolved methylmercury and inorganic mercury were important factors for determining phytoplankton community composition at most of the stations. In contrast, during July, low salinity phytoplankton community composition was associated with particulate methylmercury concentrations, whereas phytoplankton community composition in the higher salinity stations was more related to dissolved inorganic mercury and dissolved mono and tributyltin concentrations. These results highlight the importance of taking into account factors other than light and nutrients, such as eco-toxic heavy metals, in understanding phytoplankton diversity and activity in estuarine ecosystems.
Показать больше [+] Меньше [-]Phytoplankton distribution and productivity in a highly turbid, tropical coastal system (Bach Dang Estuary, Vietnam) Полный текст
2011
Rochelle-Newall, E.J. | Chu, V.T. | Pringault, O. | Amouroux, David | Arfi, Robert | Bettarel, Y. | Bouvier, T. | Bouvier, C. | Got, P. | Nguyen, T.M.H. | Mari, Xavier | Navarro, Pablo | Duong, T.N. | Cao, T.T.T. | Pham, T.T. | Ouillon, S. | Torréton, J.-P. | Biogéochimie et écologie des milieux continentaux (Bioemco) ; École normale supérieure - Paris (ENS-PSL) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Université Pierre et Marie Curie - Paris 6 (UPMC)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS) | Institute of Marine Environment and Resources, Haiphong (IMER) ; VAST | Ecosystèmes lagunaires : organisation biologique et fonctionnement (ECOLAG) ; Université Montpellier 2 - Sciences et Techniques (UM2)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National de la Recherche Scientifique (CNRS) | Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM) ; Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS) | Institut pluridisciplinaire de recherche sur l'environnement et les matériaux (IPREM) ; Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS) | Echanges Côte-Large (ECOLA) ; Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS) | This work was financed by the EC2CO project 'HAIPHONG', and Grants from the French IRD, CNRS, Groupement De Recherche (GDR) 2476 Réseaux Trophiques Pélagiques, and the Vietnam Academy of Science and Technology (VAST).
International audience | Phytoplankton diversity, primary and bacterial production, nutrients and metallic contaminants were measured during the wet season (July) and dry season (March) in the Bach Dang Estuary, a sub-estuary of the Red River system, Northern Vietnam. Using canonical correspondence analysis we show that phytoplankton community structure is potentially influenced by both organometallic species (Hg and Sn) and inorganic metal (Hg) concentrations. During March, dissolved methylmercury and inorganic mercury were important factors for determining phytoplankton community composition at most of the stations. In contrast, during July, low salinity phytoplankton community composition was associated with particulate methylmercury concentrations, whereas phytoplankton community composition in the higher salinity stations was more related to dissolved inorganic mercury and dissolved mono and tributyltin concentrations. These results highlight the importance of taking into account factors other than light and nutrients, such as eco-toxic heavy metals, in understanding phytoplankton diversity and activity in estuarine ecosystems.
Показать больше [+] Меньше [-]Responses of dissolved organic matter (DOM) characteristics in eutrophic lake to water diversion from external watershed Полный текст
2022
He, Jia | Yang, Yan | Wu, Xue | Zhi, Guoqiang | Zhang, Ying | Sun, Xiaoneng | Jiao, Lixin | Deng, Weiming | Zhou, Hongbin | Shao, Zhi | Zhu, Qifeng
Eutrophication is an important water environment issue facing global lakes. Diversion of water from external watersheds into lakes is considered as effective in ameliorating eutrophication and reducing algal blooms. Nevertheless, the changes in lake water environment caused by external water diversion, especially the influence of water diversion on the characteristics of dissolved organic matters (DOM), are still poorly understood. We therefore used a combination of EEM-PARAFAC, Principal Component Analysis (PCA), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to investigate the effects of water diversion from the Niulan River on DOM characteristics in Lake Dianchi. The results showed that the water diversion from the Niulan River significantly improved the water quality of Lake Dianchi, the concentrations of TN, TP, COD and Chla decreased rapidly, and the degree of humification of dissolved organic matter (DOM) increased, which was in sharp contrast with that of pre-implementation. Firstly, the diversion of water from the Niulan River mainly led to changes in the structure of pollution sources. The load of influent rivers and sewage treatment plants rich in lignin and tannins increased, and the input of terrestrial humus increased. Second, the improved water quality reduced algal enrichment and frequency of blooms, and reduced the release of lipid- and protein-riched algal-derived DOM. Finally, the hydraulic retention time of Lake Dianchi caused by water diversion was shortened, the hydrodynamic conditions were significantly improved, and the dissolved oxygen (DO) level gradually recovered, which played a positive role in improving the humification degree of DOM. Our findings provide new insights for exploring the improvement of eutrophic lake eco-environmental quality caused by water diversion projects.
Показать больше [+] Меньше [-]Fate of dissolved inorganic nitrogen in turbulent rivers: The critical role of dissolved oxygen levels Полный текст
2022
Liu, Ming | He, Yixin | Cao, Li | Zhi, Yue | He, Xianjin | Li, Tao | Wei, Yanyan | Yuan, Xiaobing | Liu, Bingsheng | He, Qiang | Li, Hong | Miao, Xiaojun
Dissolved inorganic nitrogen (DIN) is considered the main factor that induces eutrophication in water, and is readily influenced by hydrodynamic activities. In this study, a 4-year field investigation of nitrogen dynamics in a turbulent river was conducted, and a laboratory study was performed in the approximately homogeneous turbulence simulation system to investigate potential mechanisms involved in DIN transformation under turbulence. The field investigation revealed that, contrary to NO⁻₃ dynamics, the NH⁺₄ concentrations in water were lower in flood seasons than in drought seasons. Further laboratory results demonstrated that limitation of dissolved oxygen (DO) caused inactive nitrification and active denitrification in static river sediment. In contrast, the increased DO levels in turbulent river intensified the mineralization of organic nitrogen in sediment; moreover, ammonification and nitrification were activated, while denitrification was first activated and then depressed. Turbulence therefore decreased NH⁺₄ and NO⁻₂ concentrations, but increased NO⁻₃ and total DIN concentrations in the overlying water, causing the total DIN to increase from 0.4 mg/L to maximum of 1.0 and 1.7 mg/L at low and high turbulence, respectively. The DIN was maintained at 0.7 and 1.0 mg/L after the 30-day incubation under low and high turbulence intensities (ε) of 3.4 × 10⁻⁴ and 7.4 × 10⁻² m²/s³, respectively. These results highlight the critical role of DO in DIN budgets under hydrodynamic turbulence, and provide new insights into the DIN transport and transformation mechanisms in turbulent rivers.
Показать больше [+] Меньше [-]Microplastic pollution in fragile coastal ecosystems with special reference to the X-Press Pearl maritime disaster, southeast coast of India Полный текст
2022
Karthik, R. | Robin, R.S. | Purvaja, R. | Karthikeyan, V. | Subbareddy, B. | Balachandar, K. | Hariharan, G. | Ganguly, D. | Samuel, V.D. | Jinoj, T.P.S. | Ramesh, R.
Microplastics (MPs) are a global environmental concern and pose a serious threat to marine ecosystems. This study aimed to determine the abundance and distribution of MPs in beach sediments (12 beaches), marine biota (6 beaches) and the influence of microbes on MPs degradation in eco-sensitive Palk Bay and Gulf of Mannar coast. The mean MP abundance 65.4 ± 39.8 particles/m² in beach sediments; 0.19 ± 1.3 particles/individual fish and 0.22 ± 0.11 particles g⁻¹ wet weight in barnacles. Polyethylene fragments (33.4%) and fibres (48%) were the most abundant MPs identified in sediments and finfish, respectively. Histopathological examination of fish has revealed health consequences such as respiratory system damage, epithelial degradation and enterocyte vacuolization. In addition, eight bacterial and seventeen fungal strains were isolated from the beached MPs. The results also indicated weathering of MPs due to microbial interactions. Model simulations helped in tracking the fate and transboundary landfall of spilled MPs across the Indian Ocean coastline after the X-Press Pearl disaster. Due to regional circulations induced by the monsoonal wind fields, a potential dispersal of pellets has occurred along the coast of Sri Lanka, but no landfall and ecological damage are predicted along the coast of India.
Показать больше [+] Меньше [-]Source, fate and budget of Dechlorane Plus (DP) in a typical semi-closed sea, China Полный текст
2021
Zhen, Xiaomei | Li, Yanfang | Wang, Xinming | Liu, Lin | Li, Yanan | Tian, Chongguo | Pan, Xiaohui | Fang, Yin | Tang, Jianhui
Dechlorane Plus (DP), which has severe effects on marine ecosystems, has been proposed for listing under the Stockholm Convention as a persistent organic pollutant (POPs). This study was the first comprehensive investigation of the concentration and fate of DP in the Bohai Sea (BS) based on determination of river estuary water, river estuary sediment, surface seawater, bottom seawater, and sea sediments samples. The highest water DP levels were found in river estuary in Tianjin in North China due to the huge usage of DP in recent years, and spatial distribution analysis indicates it was mainly affected by regional high urbanization and emission of E-waste. The spatial distribution of DP in the BS was mainly affected by a combination of coastal hydrodynamics and land anthropogenic activities. On the basis of multi-box mass balance, simulations of DP in seawater showed an increase from 2014 to 2025, before leveling off at 184 pg L ⁻¹ by a constant DP input to the BS. Riverine discharge almost contributed to the total input (∼99%) and dominated the DP levels in the BS. Degradation of DP accounted for 55.3% and 78.1% of total DP output in seawater and sediment, respectively, indicating that degradation mainly affected decline of DP in the environment.
Показать больше [+] Меньше [-]Assessment of plastic pollution in the Bohai Sea: Abundance, distribution, morphological characteristics and chemical components Полный текст
2021
Xu, Lili | Cao, Liang | Huang, Wei | Liu, Jinhu | Dou, Shuozeng
Plastics are globally distributed in oceans and can pose a threat to the environment and organisms. In this study, plastic pollution in surface water and sediments of the Bohai Sea was assessed based on plastic abundance, distribution and characteristics (shape, polymer, size and color). Water and sediment samples were collected across the sea using a plankton net (330 μm) and a grab sampler, respectively. The following conclusions were reached. 1) In surface water, large plastics were less abundant (0.14 items/m³) and showed less diverse characteristics than microplastics (0.79 items/m³) but did not significantly differ in spatial distribution. 2) Microplastics in water were more abundant (1.95 items/m³) with more diverse characteristics in Liaodong Bay than in other regions of the sea (0.26–0.59 items/m³). Plastic waste from highly concentrated agricultural, industrial and fishery activities could make large contributions to microplastics in Liaodong Bay. Additionally, low hydrodynamics and long distance to Bohai Strait are unfavorable for diffusion of particles, facilitating the retention of microplastics and increasing the abundance in this bay. 3) Microplastics in sediments were smaller in terms of dominant sizes (<0.5 mm) with less diverse characteristics than particles in water (0.5–1.5 mm). Specifically, fragments, foams and lines dominated among the microplastics in water, whereas fibers and fragments were dominant particles in sediments; alkyd resin, polyethylene, polystyrene and polypropylene (PP) predominated among the particles in water, but rayon, cellulose and PP were dominant particles in sediments. 4) Neither abundance nor size of microplastics in the two media was proportionally correlated and showed low similarity indexes of polymer (0.16), shape (0.29) or color (0.38). This could be related to mismatch in spatiotemporal distributions and variations in the characteristics, fate and behavior of microplastics in the two media. The findings provide knowledge for tracing the sources of plastics in the Bohai Sea.
Показать больше [+] Меньше [-]Dispersal and transport of microplastics in river sediments Полный текст
2021
He, Beibei | Smith, Mitchell | Egodawatta, Prasanna | Ayoko, G. A. (Godwin A.) | Rintoul, Llew | Goonetilleke, Ashantha
Rivers are viewed as major pathways of microplastic transport from terrestrial areas to marine ecosystems. However, there is paucity of knowledge on the dispersal pattern and transport of microplastics in river sediments. In this study, a three dimensional hydrodynamic and particle transport modelling framework was created to investigate the dispersal and transport processes of microplastic particles commonly present in the environment, namely, polyethylene (PE), polypropylene (PP), polyamide (PA), and polyethylene terephthalate (PET) in river sediments. The study outcomes confirmed that sedimental microplastics with lower density would have higher mobility. PE and PP are likely to be transported for a relatively longer distance, while PA and PET would likely accumulate close to source points. High water flow would transport more microplastics from source points, and high flow velocity in bottom water layer are suggested to facilitate the transport of sedimental microplastics. Considering the limited dispersal and transport, the study outcomes indicated that river sediments would act as a sink for microplastic pollutants instead of being a transport pathway. The patchiness associated with the hotspots of different plastic types is expected to provide valuable information for microplastic source tracking.
Показать больше [+] Меньше [-]Modelling impacts of water diversion on water quality in an urban artificial lake Полный текст
2021
Yang, Haiyan | Wang, Jiaqi | Li, Jiuhao | Zhou, Haolan | Liu, Zhenhuan
As an important form of urban water resource, urban artificial lakes are severely affected by rapid urbanization and interference from human activities. These small lakes are characterized by their unique irregular shape, fragile ecosystem, and relatively closed, stagnant waterbodies. However, few studies have focused on their hydrodynamics and water quality, in particular the restoration methods and mechanisms remaining unclear. The present study applied the MIKE 21 FM model to investigate the effects of water diversion on water quality in a typical urban artificial lake. By considering different flow arrangements, several model scenarios were set up to predict the impacts of water diversion on selected water quality parameter. The results showed that the effectiveness of water diversion was directly related to flow velocity, the relative position to the fresh water inlet, the amount and quality of fresh water and water remaining to be diluted, and the circulation direction of flow field. The inflow–outflow arrangement was the primary factor determining the flow field and NH₃–N variation trends across the lake, and an increased discharge exhibited unequal effects in individual zones. Wind was also important for the formation of flow circulation and pollutant variation. Methods were proposed for enhancing water quality in urban small-scale lakes, including changing the way diversion projects are managed, improving the quality of diverted flow, enhancing flow fluidity, or utilizing wind effects and local topography.
Показать больше [+] Меньше [-]