Уточнить поиск
Результаты 1-10 из 256
Quantifying the contribution rates of sulfonamide antibiotics removal mechanisms in constructed wetlands using multivariate statistical analysis Полный текст
2022
Zhang, Ling | Yan, Changzhou | Qi, Ran | Yang, Fan
The removal of antibiotics in subsurface flow constructed wetlands is performed through various removal mechanisms, such as adsorption, hydrolysis, microbial degradation and plant uptake. However, the contribution rates of the removal mechanisms in constructed wetlands are still not well studied. This study conducted a series of experiments and used multivariate statistical analysis to determine contribution rates for substrate adsorption, hydrolysis, and microbial degradation. Multiple stepwise regression analysis indicated that specific surface area and salt content were the main factors influencing sulfonamide adsorption, while temperature and pH were the main factors influencing sulfonamide hydrolysis. Variance partitioning analysis showed that the influence of physical-chemical factors was greater than that of nutrients on the microbial community. Partial least squares path analysis showed that the path coefficients of microbial degradation, adsorption and hydrolysis for sulfonamides removal in vertical subsurface flow constructed wetlands were 0.6339, 0.3608 and 0.0351, respectively, while the corresponding path coefficient were 0.5658, 0.4707 and 0.1079 in horizontal subsurface flow constructed wetlands, respectively. This means that microbial degradation contributes the most to the removal of sulfonamides in subsurface flow constructed wetlands. Enhanced microbial degradation may be a powerful measure to improve the removal of sulfonamides. These results will be helpful for understanding the removal mechanism of antibiotics and will provide a definite direction for pertinently improving sulfonamide removal efficiency in constructed wetlands.
Показать больше [+] Меньше [-]An efficient phthalate ester-degrading Bacillus subtilis: Degradation kinetics, metabolic pathway, and catalytic mechanism of the key enzyme Полный текст
2021
Xu, Youqiang | Liu, Xiao | Zhao, Jingrong | Huang, Huiqin | Wu, Mengqin | Li, Xiuting | Li, Weiwei | Sun, Xiaotao | Sun, Baoguo
Phthalate ester pollution in the environment and food chain is frequently reported. Microbial treatment is a green and efficient method for solving this problem. The isolation and systematic investigation of microorganisms generally recognized as safe (GRAS) will provide useful resources. A GRAS Bacillus subtilis strain, BJQ0005, was isolated from Baijiu fermentation starter and efficiently degraded phthalate esters (PAEs). The half-lives for di-isobutyl phthalate, di-butyl phthalate and di-(2-ethylhexyl) phthalate were 3.93, 4.28, and 25.49 h, respectively, from the initial amount of 10 mg per 10 mL reaction mixture, which are records using wild-type strains. Genome sequencing and metabolic intermediate analysis generated the whole metabolic pathway. Eighteen enzymes from the α/β hydrolase family were expressed. Enzymes GTW28_09400 and GTW28_13725 were capable of single ester bond hydrolysis of PAEs, while GTW28_17760 hydrolyzed di-ester bonds of PAEs. Using molecular docking, a possible mechanism affecting enzymatic ester bond hydrolysis of mono-butyl phthalate was proposed of GTW28_17760. The carboxyl group generated by the first hydrolysis step interacted with histidine in the catalytic active center, which negatively affected enzymatic hydrolysis. Isolation and systematic investigation of the PAE degradation characteristics of B. subtilis will promote the green and safe treatment of PAEs in the environment and food industry.
Показать больше [+] Меньше [-]Aerosol water content enhancement leads to changes in the major formation mechanisms of nitrate and secondary organic aerosols in winter over the North China Plain Полный текст
2021
Chen, Chunrong | Zhang, Haixu | Yan, Weijia | Wu, Nana | Zhang, Qiang | He, Kebin
In recent years, severe air pollution still frequently occurs in winter despite the effective implementation of clean air actions in China. Therefore, field measurements of particle composition and gas precursors were collected from December 1, 2018 to January 15, 2019 at an urban site in a central Chinese city to investigate the existing mechanisms of pollution. The hourly averaged PM₂.₅ concentration during the campaign was 92.7 μg m⁻³, with nitrate and organic aerosol (OA) demonstrated as the principal components. Generally, NO₂ oxidation in the daytime was observed as the major mechanism for nitrate generation, and aerosol water content (AWC) showed its influential role with the associated increases in the nitrogen oxidation and nitrate partitioning ratios. When AWC increased from dozens to hundreds of μg m⁻³ after the afternoon, nocturnal N₂O₅ hydrolysis was demonstrated as the overriding mechanism and provoked extreme contamination of nitrates. Five sources of organic aerosols (OAs) were identified: hydrocarbon-like OAs (HOAs, 16.5%), coal combustion OAs (CCOAs, 19.2%), biomass burning OAs (BBOAs, 9.9%), semi-volatile oxygenated OAs (SV–OOAs, 29.4%), and low-volatile oxygenated OAs (LV-OOAs, 25.0%). SV-OOAs and LV-OOAs were identified as gasSOAs and aqSOAs according to their sensitivities to the atmospheric oxidation capacity and AWC. In addition, aqueous-phase processing was found to be the dominant pathway for SOA formation when the AWC concentration was higher than 80 μg m⁻³. As an influential factor for nitrate and SOA formation, AWC could be greatly affected by RH and the concentrations of inorganic species. Sulfate, which was mainly contributed by anthropogenic emissions, was demonstrated to be a significant factor for active aqueous phase reactions, although SO₂ has been dramatically reduced in recent years. Above all, this study revealed the significant role of AWC in current pollution episode in winter, and will assist in establishing future measures for pollution mitigation.
Показать больше [+] Меньше [-]Oxidation and sources of atmospheric NOx during winter in Beijing based on δ18O-δ15N space of particulate nitrate Полный текст
2021
Zhang, Zhongyi | Guan, Hui | Xiao, Hongwei | Liang, Yue | Zheng, Nengjian | Luo, Li | Liu, Cheng | Fang, Xiaozhen | Xiao, Huayun
The determination of both stable nitrogen (δ¹⁵N–NO₃⁻) and stable oxygen (δ¹⁸O–NO₃⁻) isotopic signatures of nitrate in PM₂.₅ has shown potential for an approach of assessing the sources and oxidation pathways of atmospheric NOx (NO+NO₂). In the present study, daily PM₂.₅ samples were collected in the megacity of Beijing, China during the winter of 2017–2018, and this new approach was used to reveal the origin and oxidation pathways of atmospheric NOx. Specifically, the potential of field δ¹⁵N–NO₃⁻ signatures for determining the NOx oxidation chemistry was explored. Positive correlations between δ¹⁸O–NO₃⁻ and δ¹⁵N–NO₃⁻ were observed (with R² between 0.51 and 0.66, p < 0.01), and the underlying environmental significance was discussed. The results showed that the pathway-specific contributions to NO₃⁻ formation were approximately 45.3% from the OH pathway, 46.5% from N₂O₅ hydrolysis, and 8.2% from the NO₃+HC channel based on the δ¹⁸O-δ¹⁵N space of NO₃⁻. The overall nitrogen isotopic fractionation factor (εN) from NOx to NO₃⁻ on a daily scale, under winter conditions, was approximately +16.1‰±1.8‰ (consistent with previous reports). Two independent approaches were used to simulate the daily and monthly ambient NOx mixtures (δ¹⁵N-NOx), respectively. Results indicated that the monthly mean values of δ¹⁵N-NOx compared well based on the two approaches, with values of −5.5‰ ± 2.6‰, −2.7‰ ± 1.9‰, and −3.2‰ ± 2.2‰ for November, December, and January (2017–2018), respectively. The uncertainty was in the order of 5%, 5‰ and 5.2‰ for the pathway-specific contributions, the εN, and δ¹⁵N-NOx, respectively. Results also indicated that vehicular exhaust was the key contributor to the wintertime atmospheric NOx in Beijing (2017–2018). Our advanced isotopic perspective will support the future assessment of the origin and oxidation of urban atmospheric NOx.
Показать больше [+] Меньше [-]Evaluation of wetland substrates for veterinary antibiotics pollution control in lab-scale systems Полный текст
2021
Liu, Lin | Li, Jie | Xin, Yu | Huang, Xu | Liu, Chaoxiang
The behaviors of typical veterinary antibiotics (oxytetracycline, ciprofloxacin and sulfamethazine) and 75 types of corresponding antibiotic resistant genes (ARGs) in four substrate systems (zeolite, gravel, red brick, and oyster shell) were investigated in this study. The results indicated that during treating synthetic livestock wastewater with individual antibiotic influent concentration of 100 μg/L, the effluent contained oxytetracycline and ciprofloxacin concentrations of 0.7–1.5 μg/L and 1.0–1.9 μg/L, respectively, in the zeolite and red brick systems, which were significantly lower than those of the other substrate systems (4.6–14.5 μg/L). Statistical correlation analyses indicated that the difference regarding oxytetracycline and ciprofloxacin removal among the four substrates was determined by their adsorption capacity which was controlled by the chemisorption mechanism. The average removal efficiency of sulfamethazine in the gravel system (48%) was higher than that of the other substrate systems (34–45%), and biodegradation may alter the sulfamethazine performance because of its co-metabolism process. Although tetG, floR, sul1, and qacEΔ1 were the dominant ARGs in all substrate systems (8.74 × 10⁻²-6.34 × 10⁻¹), there was difference in the total ARG enrichment levels among the four substrates. Oyster shell exhibited the lowest total relative abundance (1.56 × 10⁰) compared to that of the other substrates (1.82 × 10⁰–2.27 × 10⁰), and the ARG total relative abundance exhibited significant negative and positive correlations with the substrate pH and system bacterial diversity (P < 0.05), respectively. In summary, this study indicated that due to the difference of adsorption capacity and residual abundant nutrient in wastewater, the wetland substrate selection can affect the removal efficiency of veterinary antibiotics, and antibiotics may not be the determining factor of ARG enrichment in the substrate system.
Показать больше [+] Меньше [-]Macro, colloidal and nanobiochar for oxytetracycline removal in synthetic hydrolyzed human urine Полный текст
2020
Ramanayaka, Sammani | Manish Kumar, | Etampawala, Thusitha | Vithanage, Meththika
Macro (BC), colloidal (CBC) and nanobiochar (NBC) were examined for the particle size effect for adsorptive removal of oxytetracycline (OTC) and co-occurring nutrients, which are present in synthetic hydrolyzed human urine. The surface morphologies and functionality of biochars were characterized using Scanning Electron Microscopy (SEM), Brunauer-Emmett-Teller (BET) specific surface area and Fourier Transform Infra-Red (FTIR) Spectroscopy. Experiments for the removal of OTC were performed at the natural pH (pH 9.0) of hydrolyzed human urine using solid-solutions of 3 types of chars (1 g/L) with a contact time of 5 h, at initial OTC concentration of 50 mg/L where isotherm experiments were investigated with OTC concentrations from 25 to 1000 mg/L. The highest maximum adsorption capacity of 136.7 mg/g was reported for CBC, while BC reported slightly low value (129.34 mg/g). Interestingly, NBC demonstrated a two-step adsorption process with two adsorption capacities (16.9 and 113.2 mg/g). Colloidal biochar depicted the highest adsorption for NH₄⁺, PO₄³⁻, and SO₄²⁻ nutrients. All 3 types of chars showed strong retention with a poor desorption (6% in average) of OTC in synthetic hydrolyzed urine medium. CBC and NBC demonstrated both physisorption and chemisorption, whereas the OTC removal by BC was solely via physisorption. Nevertheless, CBC biochar demonstrated the best performance in adsorptive removal of OTC and nutrients in hydrolyzed human urine and its capability towards wastewater treatment. As the removal of nutrients were low, the treated urine can possibly be used as a safe fertilizer.
Показать больше [+] Меньше [-]Characterization and source identification of organic phosphorus in sediments of a hypereutrophic lake Полный текст
2020
Yuan, Hezhong | Tai, Ziqiu | Li, Qiang | Zhang, Fengmin
High phosphorus (P) load and consequent algal bloom are critical issues because of their harmful effects to aquatic ecosystems. The organic phosphorus (Po) cycling and hydrolyzation pathway in the sediments of a hypereutrophic lake area with high algae biomass were investigated using stable isotopes (δ¹³C and δ¹⁵N) along with C/N ratios, a sequential extraction procedure, ³¹P NMR spectrum, and alkaline phosphatase activity (APA) was measured simultaneously. C/N ratios lower than 10 combined with lighter δ¹³C (−23.5 to −25.2‰) and δ¹⁵N values (3.7–9.5‰) indicated that endogenous algal debris contributed to the predominant proportions of P-containing organic matter in the sediments. Sequential extraction results showed that Po fractions decreased as nonlabile Po > moderately labile Po > biomass-Po. Decreasing humic-associated Po (HA-Po) in sediments downward suggested the degradation of high-molecular-weight Po compounds on the geological time scale to low-molecular-weight Po including fulvic-associated Po (FA-Po), which is an important source of labile Po in the sediment. An analysis of the solution ³¹P NMR spectrum analysis showed that important Po compound groups decreased in the order of orthophosphate monoesters > DNA-Po > phospholipids. The significant correlation indicated that orthophosphate monoesters were the predominant components of HA-Po. Rapid hydrolysis of labile orthophosphate diesters further facilitated the accumulation of orthophosphate monoesters in the sediments. Additionally, the simultaneously upward increasing trend demonstrated that APA accelerated the mineralization of Po into dissolved reactive phosphorus (DRP), which might feed back to eutrophication in algae-dominant lakes. The significantly low half-life time (T₁/₂) for important Po compound groups indicated faster metabolism processes, including hydrolysis and mineralization, in hypereutrophic lakes with high algae biomass. These findings provided improved insights for better understanding of the origin and cycling processes as well as management of Po in hypereutrophic lakes.
Показать больше [+] Меньше [-]Elucidating the biodegradation mechanism of tributyl phosphate (TBP) by Sphingomonas sp. isolated from TBP-contaminated mine tailings Полный текст
2019
Liu, Jia | Lin, Hai | Dong, Yingbo | Li, Bing
Tributyl phosphate (TBP) is recognised as a global environmental contaminant because of its wide use in floatation reagents, nuclear fuel reprocessing and plasticisers. This contaminant is hardly degraded by hydrolysis in the environment due to its special physicochemical properties. In this study, one TBP-degrading strain was isolated from TBP-contaminated abandoned mine tailings, and 16S rRNA identification revealed that the strain belonged to the genus Sphingomonas. Results validated that the strain could utilise TBP as the sole carbon source, and vitamin was not the essential factor for its growth. Liquid chromatography time-of-flight mass spectrometry analysis identified di-n-butyl phosphate (DnBP) and mono-n-butyl phosphate (MnBP) as the intermediate metabolites for TBP biodegradation. No obvious change in carbon and hydrogen isotope composition was observed in biodegradation processes (cell suspension and crude extract degradation), which indicated that the first irreversible bond cleavage did not involve carbon or hydrogen. Hence, the TBP degradation scheme by Sphingomonas sp. proposed that the first irreversible step of TBP transferred to DnBP would lead to PO bond cleavage. This study combined the identification of products and isotope fractionation in substrates to investigate the transformation mechanism, thereby providing an eco-friendly and cost-effective way for the in situ bioremediation of TBP-contaminated sites by the isolated TBP degradation strain.
Показать больше [+] Меньше [-]The potential role of sediment organic phosphorus in algal growth in a low nutrient lake Полный текст
2019
Ni, Zhaokui | Wang, Shengrui | Cai, Jingjing | Li, Hong | Jenkins, Alan | Maberly, Stephen C. | May, Linda
The role of sediment–bound organic phosphorus (Pₒ) as an additional nutrient source is a component of internal P budgets in lake system that is usually neglected. Here we examined the relative importance of sediment Pₒ to internal P load and the role of bioavailable Pₒ in algal growth in Lake Erhai, China. Lake Erhai sediment extractable Pₒ accounted for 11–43% (27% average) of extractable total P, and bioavailable Pₒ accounted for 21–66% (40%) of Pₒ. The massive storage of bioavailable Pₒ represents an important form of available P, essential to internal loads. The bioavailable Pₒ includes mainnly labile monoester P and diester P was identified in the sequential extractions by H₂O, NaHCO₃, NaOH, and HCl. 40% of H₂O−Pₒ, 39% of NaHCO₃−Pₒ, 43% of NaOH−Pₒ, and 56% of HCl−Pₒ can be hydrolyzed to labile monoester and diester P, suggesting that the bioavailability of Pₒ fractions was in decreasing order as follows: HCl−Pₒ > NaOH−Pₒ > H₂O−Pₒ > NaHCO₃−Pₒ. It is implied that traditional sequential fractionation of Pₒ might overestimate the availability of labile Pₒ in sediments. Furthermore, analysis of the environmental processes of bioavailable Pₒ showed that the stabler structure of dissloved organic matter (DOM) alleviated the degradation and release of diester P, abundant alkaline phosphatase due to higher algal biomass promoted the degradation of diester P. The stability of DOM structure and the degradation of diester P might responsible for the spatial differences of labile monoester P. The biogeochemical cycle of bioavailable Pₒ replenishs available P pools in overlying water and further facilitate algal growth during the algal blooms. Therefore, to control the algal blooms in Lake Erhai, an effective action is urgently required to reduce the accumulation of Pₒ in sediments and interrupt the supply cycle of bioavailable Pₒ to algal growth.
Показать больше [+] Меньше [-]Functional evaluation of pollutant transformation in sediment from combined sewer system Полный текст
2018
Shi, Xuan | Ngo, Huu Hao | Sang, Langtao | Jin, Pengkang | Wang, Xiaochang C. | Wang, Guanghua
In this study, a pilot combined sewer system was constructed to characterize the pollutant transformation in sewer sediment. The results showed that particulate contaminants deposited from sewage could be transformed into dissolved matter by distinct pollutant transformation pathways. Although the oxidation-reduction potential (ORP) was varied from −80 mV to −340 mV in different region of the sediment, the fermentation was the dominant process in all regions of the sediment, which induced hydrolysis and decomposition of particulate contaminants. As a result, the accumulation of dissolved organic matter and the variation of ORP values along the sediment depth led to the depth-dependent reproduction characteristics of methanogens and sulfate-reducing bacteria, which were existed in the middle and deep layer of the sediment respectively. However, the diversity of nitrifying and polyphosphate-accumulating bacteria was low in sewer sediment and those microbial communities showed a non-significant correlation with nitrogen and phosphorus contaminants, which indicated that the enrichment of nitrogen and phosphorus contaminants was mainly caused by physical deposition process. Thus, this study proposed a promising pathway to evaluate pollutant transformation and can help provide theoretical foundation for urban sewer improvement.
Показать больше [+] Меньше [-]