Уточнить поиск
Результаты 1-10 из 14
PFOS-induced thyroid hormone system disrupted rats display organ-specific changes in their transcriptomes
2022
Davidsen, Nichlas | Ramhøj, Louise | Lykkebo, Claus Asger | Kugathas, Indusha | Poulsen, Rikke | Rosenmai, Anna Kjerstine | Evrard, Bertrand | Darde, Thomas A. | Axelstad, Marta | Bahl, Martin Iain | Hansen, Martin | Chalmel, Frederic | Licht, Tine Rask | Svingen, Terje
Perfluorooctanesulfonic acid (PFOS) is a persistent anthropogenic chemical that can affect the thyroid hormone system in humans and animals. In adults, thyroid hormones (THs) are regulated by the hypothalamic-pituitary-thyroid (HPT) axis, but also by organs such as the liver and potentially the gut microbiota. PFOS and other xenobiotics can therefore disrupt the TH system at various locations and through different mechanisms. To start addressing this, we exposed adult male rats to 3 mg PFOS/kg/day for 7 days and analysed effects on multiple organs and pathways simultaneously by transcriptomics. This included four primary organs involved in TH regulation, namely hypothalamus, pituitary, thyroid, and liver. To investigate a potential role of the gut microbiota in thyroid hormone regulation, two additional groups of animals were dosed with the antibiotic vancomycin (8 mg/kg/day), either with or without PFOS. PFOS exposure decreased thyroxine (T4) and triiodothyronine (T3) without affecting thyroid stimulating hormone (TSH), resembling a state of hypothyroxinemia. PFOS exposure resulted in 50 differentially expressed genes (DEGs) in the hypothalamus, 68 DEGs in the pituitary, 71 DEGs in the thyroid, and 181 DEGs in the liver. A concomitant compromised gut microbiota did not significantly change effects of PFOS exposure. Organ-specific DEGs did not align with TH regulating genes; however, genes associated with vesicle transport and neuronal signaling were affected in the hypothalamus, and phase I and phase II metabolism in the liver. This suggests that a decrease in systemic TH levels may activate the expression of factors altering trafficking, metabolism and excretion of TH. At the transcriptional level, little evidence suggests that the pituitary or thyroid gland is involved in PFOS-induced TH system disruption.
Показать больше [+] Меньше [-]Effects of two little-studied environmental pollutants on early development in anurans
2020
Bókony, Veronika | Verebélyi, Viktória | Ujhegyi, Nikolett | Mikó, Zsanett | Nemesházi, Edina | Szederkényi, Márk | Orf, Stephanie | Vitányi, Evelin | Móricz, Ágnes M.
Despite intensive ecotoxicological research, we still know relatively little about the ecological impacts of many environmental contaminants. Filling these knowledge gaps is particularly important regarding amphibians, because they play significant roles in freshwater and terrestrial ecosystems, and their populations are declining worldwide. In this study, we investigated two pollutants that have been poorly studied in ecotoxicology despite their widespread occurrence in surface waters: the herbicide terbuthylazine and the pharmaceutical drug carbamazepine. We exposed two anuran species throughout their larval development to each of two environmentally relevant concentrations of each pollutant, and recorded mortality and 17 sub-lethal endpoints up to several months after exposure. Mortality was low and unrelated to treatment. In agile frogs (Rana dalmatina), we found that treatment with 0.3 μg/L terbuthylazine decreased tadpole activity and reduced fat bodies in juveniles, whereas treatment with 50 μg/L carbamazepine decreased spleen size and increased spleen pigmentation. In common toads (Bufo bufo), treatment with 0.003 μg/L terbuthylazine increased body mass at metamorphosis, treatment with 0.3 μg/L terbuthylazine increased the size of optic tecta, and treatment with 0.5 μg/L carbamazepine decreased hypothalamus size. Treatment with 50 μg/L carbamazepine reduced the feeding activity of toad tadpoles, decreased their production of anti-predatory bufadienolide toxins, and increased their body mass at metamorphosis; juvenile toads in this treatment group had reduced spleen pigmentation. Neither treatments affected the time to metamorphosis, post-metamorphic body mass, or sex ratios significantly. These results show that environmental levels of both terbuthylazine and carbamazepine can have several sub-lethal effects on anurans, which may be detrimental to individual fitness and population persistence in natural conditions. Our findings further highlight that toxic effects cannot be generalized between chemicals of similar structure, because the terbuthylazine effects we found do not conform with previously reported effects of atrazine, a related and extensively studied herbicide.
Показать больше [+] Меньше [-]Effect of urban environment on pineal machinery and clock genes expression of tree sparrow (Passer montanus)
2019
Increasing urbanisation is altering the physiology of wild animals and the mechanisms involved are largely unknown. We hypothesised that altering the physiology of urban organisms is due to the effect of extra light at night on the circadian clock by modulating the expression of pineal machinery and clock genes. Two experiments were performed. In Experiment 1, immediately after being procured from their respective sites (urban and rural sites), birds were released individually in LLdᵢₘ light conditions. Circadian rhythm period, activity duration, and total activity count were calculated and did not differ between urban and rural birds. In Experiment 2, birds (from urban and rural habitats) were sampled at six time points at regular 4-h intervals, beginning 1 h after sunrise. We measured daily variations in plasma melatonin levels. We also analysed the expression levels of Aanat, Mel1A and Mel1B as an indicator of melatonin biosynthesis and action machinery. Clock and clock-controlled genes (Bmal1, Clock, Per2, Per3, Cry1 and Npas2) were studied in the hypothalamus, the pineal gland, and retina to investigate the effects of urban habitats on the circadian clock. Our results show that there is a lower expression of Aanat in the pineal gland and relatively low plasma melatonin levels in urban birds. Further, clock genes are also differentially expressed in all three central tissues of urban birds. We propose that alterations in the melatonin biosynthesis machinery and the expression of clock genes could result in miscalculations in the internal timing of the organism, with environmental timings leading to altered physiology in urban wild animals.
Показать больше [+] Меньше [-]Selenium abates reproductive dysfunction via attenuation of biometal accumulation, oxido-inflammatory stress and caspase-3 activation in male rats exposed to arsenic
2019
Adedara, Isaac A. | Adebowale, Adetutu A. | Atanda, Oluwadarasimi E. | Fabunmi, Adekola T. | Ayenitaju, Afolashade C. | Rocha, Joao B.T. | Farombi, Ebenezer O.
Frequent exposure to arsenic is well documented to impair reproductive function in humans and animals. Biological significance of inorganic selenium and organoselenium, diphenyl diselenide (DPDS), has been attributed to their pharmacological activities. However, their roles in arsenic-mediated reproductive toxicity is lacking in literature. The present study evaluated the protective effects elicited by selenium and DPDS in arsenic-induced reproductive deficits in rats. Animals were either exposed to arsenic alone in drinking water at 60 μg AsO₂Na L⁻¹ or co-treated with selenium at 0.25 mg kg⁻¹ or DPDS at 2.5 mg kg⁻¹ body weight for 45 consecutive days. Results indicated that arsenic-mediated deficits in spermatogenic indices and marker enzymes of testicular function were significantly abrogated in rats co-treated with selenium or DPDS. Additionally, selenium or DPDS co-treatment prevented arsenic-mediated elevation in oxidative stress indices and significantly suppressed arsenic-mediated inflammation evidenced by diminished myeloperoxidase activity, nitric oxide, tumor necrosis factor alpha and interleukin-1 beta levels in hypothalamus, testes and epididymis of the rats. Moreover, selenium or DPDS abrogated arsenic mediated activation of caspase-3 activity and histological lesions in the treated rats. Taken together, selenium or DPDS improved reproductive function in arsenic-exposed rats via suppression of inflammation, oxidative stress and caspase-3 activation in rats.
Показать больше [+] Меньше [-]The environmental contaminant tributyltin leads to abnormalities in different levels of the hypothalamus-pituitary-thyroid axis in female rats
2018
Andrade, Marcelle Novaes | Santos-Silva, Ana Paula | Rodrigues-Pereira, Paula | Paiva-Melo, Francisca Diana | de Lima Junior, Niedson Correa | Teixeira, Mariana Pires | Soares, Paula | Dias, Glaecir Roseni Munstock | Graceli, Jones Bernardes | de Carvalho, Denise Pires | Ferreira, Andrea Claudia Freitas | Miranda-Alves, Leandro
Tributyltin is a biocide used in nautical paints, aiming to reduce fouling of barnacles in ships. Despite the fact that many effects of TBT on marine species are known, studies in mammals have been limited, especially those evaluating its effect on the function of the hypothalamus-pituitary-thyroid (HPT) axis. The aim of this study was to investigate the effects of subchronic exposure to TBT on the HPT axis in female rats. Female Wistar rats received vehicle, TBT 200 ng kg−1 BW d−1 or 1000 ng kg−1 BW d−1 orally by gavage for 40 d. Hypothalamus, pituitary, thyroid, liver and blood samples were collected. TBT200 and TBT1000 thyroids showed vacuolated follicular cells, with follicular hypertrophy and hyperplasia. An increase in epithelial height and a decrease in the thyroid follicle and colloid area were observed in TBT1000 rats. Moreover, an increase in the epithelium/colloid area ratio was observed in both TBT groups. Lower TRH mRNA expression was observed in the hypothalami of TBT200 and TBT1000 rats. An increase in Dio1 mRNA levels was observed in the hypothalamus and thyroid in TBT1000 rats only. TSH serum levels were increased in TBT200 rats. In TBT1000 rats, there was a decrease in total T4 serum levels compared to control rats, whereas T3 serum levels did not show significant alterations. We conclude that TBT exposure can promote critical abnormalities in the HPT axis, including changes in TRH mRNA expression and serum TSH and T4 levels, in addition to affecting thyroid morphology. These findings demonstrate that TBT disrupts the HPT axis. Additionally, the changes found in thyroid hormones suggest that TBT may interfere with the peripheral metabolism of these hormones, an idea corroborated by the observed changes in Dio1 mRNA levels. Therefore, TBT exposition might interfere not only with the thyroid axis but also with thyroid hormone metabolism.
Показать больше [+] Меньше [-]Microcystin-LR affects the hypothalamic-pituitary-inter-renal (HPI) axis in early life stages (embryos and larvae) of zebrafish
2018
Ma, Yukun | Wang, Yeke | Giesy, John P. | Chen, Feng | Shi, Ting | Chen, Jun | Xie, Ping
Frequencies and durations of blooms of cyanobacteria are increasing. Some cyanobacteria can produce cyanotoxins including microcystins (MCs). MCs are the most common toxic products of hazardous algal blooms (HABs), with the greatest potential for exposure and to cause toxicity. Recently, MCs have been shown to disrupt endocrine functions. In this study, for the first time, effects of MC-LR on the hypothalamic-pituitary-inter-renal (HPI) axis during early embryonic development (embryos/larvae) of zebrafish (Danio rerio), were investigated. Embryos/larvae of zebrafish were exposed to 1, 10, 100, or 300 μg MC-LR/L during the period of 4–168 h post-fertilization (hpf). Exposure to 300 μg MC-LR/L resulted in significantly greater concentrations of whole-body cortisol than those in controls. Expressions of genes along the HPI axis and mineralocorticoid receptor (MR-) and glucocorticoid receptor (GR-) centered gene networks were evaluated by use of quantitative real-time PCR. Expression of mRNA for crh was significantly down-regulated by exposure to 300 μg MC-LR/L, while expressions of crhbp, crhr1, and crhr2 were significantly up-regulated, relative to controls. MC-LR caused significantly lesser levels of mRNA for steroidogenic genes including hmgra, star, and cyp17, but expression of mRNA for hsd20b was significantly greater than that of controls. Treatment with MC-LR also altered profiles of transcription of MR- and GR-centered gene networks, which might result in multiple responses. Taken together, these results demonstrated that MC-LR affected the corticosteroid-endocrine system of larvae of zebrafish. This study provided valuable insights into molecular mechanisms behind potential toxicity and endocrine disruption of MCs.
Показать больше [+] Меньше [-]Brain morphometric profiles and their seasonal modulation in fish (Liza aurata) inhabiting a mercury contaminated estuary
2018
Puga, Sónia | Cardoso, Vera | Pinto-Ribeiro, Filipa | Pacheco, Mario | Almeida, Armando | Pereira, Patrícia
Mercury (Hg) is a potent neurotoxicant known to induce important adverse effects on fish, but a deeper understanding is lacking regarding how environmental exposure affects the brain morphology and neural plasticity of specific brain regions in wild specimens. In this work, it was evaluated the relative volume and cell density of the lateral pallium, hypothalamus, optic tectum and molecular layer of the cerebellum on wild Liza aurata captured in Hg-contaminated (LAR) and non-contaminated (SJ) sites of a coastal system (Ria de Aveiro, Portugal). Given the season-related variations in the environment that fish are naturally exposed, this assessment was performed in the winter and summer. Hg triggered a deficit in cell density of hypothalamus during the winter that could lead to hormonal dysfunctions, while in the summer Hg promoted larger volumes of the optic tectum and cerebellum, indicating the warm period as the most critical for the manifestation of putative changes in visual acuity and motor-dependent tasks. Moreover, in fish from the SJ site, the lateral pallium relative volume and the cell density of the hypothalamus and optic tectum were higher in the winter than in summer. Thus, season-related stimuli strongly influence the size and/or cell density of specific brain regions in the non-contaminated area, pointing out the ability of fish to adapt to environmental and physiological demands. Conversely, fish from the Hg-contaminated site showed a distinct seasonal profile of brain morphology, presenting a larger optic tectum in the summer, as well as a larger molecular layer of the cerebellum with higher cell density. Moreover, Hg exposure impaired the winter-summer variation of the lateral pallium relative size (as observed at SJ). Altogether, seasonal variations in fish neural morphology and physiology should be considered when performing ecotoxicological studies in order to better discriminate the Hg neurotoxicity.
Показать больше [+] Меньше [-]Anti-kindling effect of Ginkgo biloba leaf extract and L-carnitine in the pentylenetetrazol model of epilepsy
2022
Essawy, Amina E. | El-Sayed, Soad Ahmed | Tousson, Ehab | Abd El-gawad, Horeya S. | Alhasani, Reem Hasaballah | Abd Elkader, Heba-Tallah Abd Elrahim
Epilepsy is one of the most common serious brain disorders, affecting about 1% of the population all over the world. Ginkgo biloba extract (GbE) and L-carnitine (LC) reportedly possess the antioxidative activity and neuroprotective potential. In this report, we investigated the possible protective and therapeutic effects of GbE and LC against pentylenetetrazol (PTZ)-induced epileptic seizures in rat hippocampus and hypothalamus. Adult male albino rats were equally divided into eight groups: control, GbE (100 mg/kg), LC (300 mg/kg), PTZ (40 mg/kg), protective groups (GbE + PTZ and LC + PTZ), and therapeutic groups (PTZ + GbE and PTZ + LC). The oxidative stress, antioxidant, and neurochemical parameters, viz., malondialdehyde (MDA), nitric oxide (NO), reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), acetylcholine esterase (AchE), dopamine (DA), norepinephrine (NE), and serotonin (5-HT), in the hippocampal and hypothalamic regions have been evaluated. PTZ injection leads to an increase in the seizure score, the levels of MDA and NO, and to a decrease in the activity of GSH, SOD, CAT, and GPx. Besides, monoamine neurotransmitters, DA, NE, and 5-HT, were depleted in PTZ-kindled rats. Furthermore, PTZ administration caused a significant elevation in the activity of AchE. Hippocampal and hypothalamic sections from PTZ-treated animals were characterized by severe histopathological alterations and, intensely, increased the ezrin immunolabeled astrocytes. Pre- and post-treatment of PTZ rats with GbE and LC suppressed the kindling acquisition process and remarkably alleviated all the aforementioned PTZ-induced effects. GbE and LC have potent protective and therapeutic effects against PTZ-induced kindling seizures via the amelioration of oxidative/antioxidative imbalance, neuromodulatory, and antiepileptic actions.
Показать больше [+] Меньше [-]Filtered air intervention reduces inflammation and hypothalamus–pituitary–adrenal axis activation in adult male and female rats after PM 2.5 exposure
2020
Liu, Cuiying | Yang, Jian | Guan, Longfei | Zhu, Yuequan | Geng, Xiaokun
Previous studies have indicated that particulate matter 2.5 (PM2.5) exposure stimulates systemic inflammation and activates the hypothalamus–pituitary–adrenal (HPA) axis, both of which are associated with stroke incidence and mortality. However, whether filtered air (FA) intervention modulates inflammation and HPA axis activation is still largely unknown. For FA group and PM2.5 group, adult Sprague-Dawley male and female rats were exposed to FA or PM2.5 for 6 months, respectively. For PM2.5 + 15 days FA group, the rats were achieved by receiving 15 days FA after PM2.5 exposure for 6 months. The immune cells and inflammatory biomarker levels in the blood and brain were analyzed by flow cytometry, ELISA, and qRT-PCR. To assess HPA axis activation, the levels of hormones in the blood were also analyzed by ELISA. FA intervention increased the percentage of CD4 T cells and T cells in the blood, which had decreased after PM2.5 exposure in both male and female rats. The ELISA and qRT-PCR results showed that FA intervention significantly reduced the levels of inflammatory biomarkers in the peripheral blood, and alleviated neuroinflammation in the cortex, hippocampus, and striatum. In addition, FA intervention also inhibited the inflammation in the hypothalamus and pituitary and adrenal glands, and decreased the levels of HPA axis hormones. Our results indicate that FA intervention exerts a protective effect on the brain by decreasing inflammation and HPA axis activation after PM2.5 exposure in both male and female rats.
Показать больше [+] Меньше [-]Simultaneous exposure to electromagnetic field from mobile phone and unimpeded fructose drinking during pre-, peri-, and post-pubertal stages perturbs the hypothalamic and hepatic regulation of energy homeostasis by early adulthood: experimental evidence
2022
Tripathi, Ruchi | Banerjee, Sanjay Kumar | Nirala, Jay Prakash | Mathur, Rajani
The present-day children-adolescents ubiquitously use the mobile phones and unrestrictedly consume fructose-laden diet. Unfortunately, a rise in the incidence of insulin resistance and fatty liver syndrome in young adults has also been recorded. To delineate a possible correlate, the effect of exposure to electromagnetic field (EMF) from the mobile phone and unrestricted fructose intake during pre-, peri-, and post-pubertal stages of development on orexigenic and anorexigenic signals arising from the hypothalamus and liver of rats is investigated here. The study design included four arms, i.e., “Normal”, “Exposure Only (ExpO)”, “Fructose Only (FruO)”, and “Exposure with Fructose (EF)”, wherein weaned rats received either “normal chow and drinking water” or “normal chow and fructose (15%) drinking solution” in presence and absence of EMF exposure (2 h/day) for 8 weeks. The results indicate that the total calories consumed by the EF were higher by early adulthood than normal, possibly under the influence of the raised levels of the orexigenic hormone, i.e., ghrelin, and it reflected as raised rate of weight gain. At early adulthood, the EF recorded mitigated response and sensitivity of insulin. Despite EF being a “fed-state”, both centrally and peripherally, the glycolysis was restrained, but the gluconeogenesis was raised. Additionally, the altered lipid profile and the glycogen levels indicate that the EF developed fatty liver. The energy homeostasis of the EF was compromised as evidenced by (a) reduced expression of the glucosensors-GLUT2 and glucokinase in the hypothalamus and liver and (b) reduced expression of the cellular energy regulator—AMPK, orexigenic peptide–NPY, and anorexigenic peptide-POMC in the hypothalamus. Taken together, the present study evidences that the exposure to EMFfrom the mobile phone and unrestricted fructose intake during childhood-adolescence impairs the central and peripheral pathways that mediate the glucosensing, glucoregulation, feeding, and satiety behavior by early adulthood.
Показать больше [+] Меньше [-]