Уточнить поиск
Результаты 1-10 из 11
Toxic effects and mechanisms of three commonly used fungicides on the human colon adenocarcinoma cell line Caco-2
2020
Tao, Huaping | Bao, Zhiwei | Jin, Cuiyuan | Miao, Wenyu | Fu, Zhengwei | Jin, Yuanxiang
Fungicides, usually refer to the chemical agents that can effectively control or kill the pathogenic microorganisms. Here, we revealed the effects of three different fungicides, imazalil (IMZ), chlorothalonil (CTL) and carbendazim (CBZ), which are typical broad-spectrum fungicides that are detected at high levels in the natural environment, on heterogeneous human epithelial colorectal cells (Caco-2 cells). All three fungicides had the potential to induce different degrees of toxicity, cause apoptosis, reactive oxygen species (ROS) and even change the cell cycle in the cells. The half maximal inhibitory concentration (IC50) of CTL is the lowest among these three fungicides, suggesting that it may have the highest exposure risk, followed by IMZ, and CBZ. The results of the real-time PCR, Western blotting, and mitochondrial membrane potential (MMP) assays and the activities of key enzymes suggested that CTL induced apoptosis in Caco-2 cells via a mitochondrial-dependent pathway, as indicated by the upregulation of the expression of the apoptotic p53 and bax genes, the increase of the apoptosis marker cytochrome-c, the decrease of mRNA level of bcl-2 gene, and the decrease in the MMP. Exposure to two other fungicides also upregulated the transcriptional level of bax and the expression of cytochrome-c, but the mRNA level of bcl-2 was increased (IMZ) or unchanged (CBZ), suggesting that other pathways may be involved in the induction of cellular apoptosis by these two fungicides. In addition, all three of the fungicides could induce oxidative stress in Caco-2 cells. Our data showed that the three different kinds of fungicides all caused toxic effects in Caco-2 cells through various pathways.
Показать больше [+] Меньше [-]Enantioselective uptake, translocation and degradation of the chiral pesticides tebuconazole and imazalil by Phragmites australis
2017
Lv, Tao | Carvalho, Pedro N. | Casas, Mònica Escolà | Bollmann, Ulla E. | Arias, Carlos A. | Brix, Hans | Bester, Kai
Phytoremediation of realistic environmental concentrations (10 μg L−1) of the chiral pesticides tebuconazole and imazalil by Phragmites australis was investigated. This study focussed on removal dynamics, enantioselective mechanisms and transformation products (TPs) in both hydroponic growth solutions and plant tissues. For the first time, we documented uptake, translocation and metabolisation of these pesticides inside wetland plants, using enantioselective analysis. Tebuconazole and imazalil removal efficiencies from water reached 96.1% and 99.8%, respectively, by the end of the experiment (day 24). Removal from the solutions could be described by first-order removal kinetics with removal rate constants of 0.14 d−1 for tebuconazole and 0.31 d−1 for imazalil. Removal of the pesticides from the hydroponic solution, plant uptake, within plant translocation and degradation occurred simultaneously. Tebuconazole and imazalil concentrations inside Phragmites peaked at day 10 and 5d, respectively, and decreased thereafter. TPs of tebuconazole i.e., (5-(4-Chlorophenyl)-2,2-dimethyl-3-(1H-1,2,4-triazol-1-ylmethyl)-1,3-pentanediol and 5-(3-((1H-1,2,4-Triazol-1-yl)methyl)-3-hydroxy-4,4-dimethylpentyl)-2-chlorophenol) were quantified in solution, while the imazalil TPs (α-(2,4-Dichlorophenyl)-1H-imidazole-1-ethanol and 3-[1-(2,4-Dichlorophenyl)-2-(1H-imidazol-1-yl)ethoxy]-1,2-propanediol) were quantified in both solution and plant tissue. Pesticide uptake by Phragmites was positively correlated with evapotranspiration. Pesticide removal from the hydroponic solution was not enantioselective. However, tebuconazole was degraded enantioselectively both in the roots and shoots. Imazalil translocation and degradation inside Phragmites were also enantioselective: R-imazalil translocated faster than S-imazalil.
Показать больше [+] Меньше [-]Pesticides in the Ebro River basin: Occurrence and risk assessment
2016
Ccanccapa, Alexander | Masiá, Ana | Navarro-Ortega, Alícia | Picó, Yolanda | Barceló, Damià
In this study, 50 pesticides were analyzed in the Ebro River basin in 2010 and 2011 to assess their impact in water, sediment and biota. A special emphasis was placed on the potential effects of both, individual pesticides and their mixtures, in three trophic levels (algae, daphnia and fish) using Risk Quotients (RQs) and Toxic Units (TUs) for water and sediments. Chlorpyrifos, diazinon and carbendazim were the most frequent in water (95, 95 and 70% of the samples, respectively). Imazalil (409.73 ng/L) and diuron (150 ng/L) were at the highest concentrations. Sediment and biota were less contaminated. Chlorpyrifos, diazinon and diclofenthion were the most frequent in sediments (82, 45 and 21% of the samples, respectively). The only pesticide detected in biota was chlorpyrifos (up to 840.2 ng g⁻¹). Ecotoxicological risk assessment through RQs showed that organophosphorus and azol presented high risk for algae; organophosphorus, benzimidazoles, carbamates, juvenile hormone mimic and other pesticides for daphnia, and organophosphorus, azol and juvenile hormone mimics for fish. The sum TUsite for water and sediments showed values < 1 for the three bioassays. In both matrices, daphnia and fish were more sensitive to the mixture of pesticide residues present.
Показать больше [+] Меньше [-]Isolation, characterization and industrial application of a Cladosporium herbarum fungal strain able to degrade the fungicide imazalil
2022
Papazlatani, Christina V. | Kolovou, Maria | Gkounou, Elisabeth E. | Azis, Konstantinos | Mavriou, Zografina | Testembasis, Stefanos | Karaoglanidis, George S. | Ntougias, Spyridon | Karpouzas, Dimitrios G.
Imazalil (IMZ) is an imidazole fungicide commonly used by fruit-packaging plants (FPPs) to control fungal infections during storage. Its application leads to the production of pesticide-contaminated wastewaters, which, according to the European Commission, need to be treated on site. Considering the lack of efficient treatment methods, biodepuration systems inoculated with tailored-made inocula specialized on the removal of such persistent fungicides appear as an appropriate solution. However, nothing is known about the biodegradation of IMZ. We aimed to isolate and characterize microorganisms able to degrade the recalcitrant fungicide IMZ and eventually to test their removal efficiency under near practical bioengineering conditions. Enrichment cultures from a soil receiving regular discharges of effluents from a FPP, led to the isolation of a Cladosporium herbarum strain, which showed no pathogenicity on fruits, a trait essential for its biotechnological exploitation in FPPs. The fungus was able to degrade up to 100 mg L⁻¹ of IMZ. However, its degrading capacity and growth was reduced at increasing IMZ concentrations in a dose-dependent manner, suggesting the involvement of a detoxification rather than an energy-gain mechanism in the dissipation of IMZ. The isolate could tolerate and gradually degrade the fungicides fludioxonil (FLD) and thiabendazole (TBZ), also used in FPPs and expected to coincide alongside IMZ in FPP effluents. The capacity of the isolate to remove IMZ in a practical context was evaluated in a benchtop immobilized-cell bioreactor fed with artificial IMZ-contaminated wastewater (200 mg L⁻¹). The fungal strain established in the reactor, completely dominated the fungal community and effectively removed >96% of IMZ. The bioreactor also supported a diverse bacterial community composed of Sphingomonadales, Burkholderiales and Pseudomonadales. Our study reports the isolation of the first IMZ-degrading microorganism with high efficiency to remove IMZ from agro-industrial effluents under bioengineering conditions.
Показать больше [+] Меньше [-]An integrative water quality evaluation in two surface water bodies from a tropical agricultural region in Cartago, Costa Rica
2022
Pérez-Villanueva, Marta E. | Chin-Pampillo, Juan S. | Aguilar-Mora, Paula | Guzmán, Ana P. | Masís-Mora, Mario | Arias-Mora, Víctor | Ramírez-Morales, Didier
A monitoring study was carried out in two micro-catchments in the Reventazón basin, in Northern Cartago, Costa Rica; pesticide occurrence and water quality were analyzed. Twelve pesticides were detected, five insecticides (chlorpyrifos, carbofuran, cypermethrin, imidacloprid, and oxamyl), four fungicides (carbendazim, imazalil, metalaxyl, and thiabendazole), and three herbicides (diuron, linuron, and terbutryn); eight of them presented risk quotients RQ >1, which implies a high risk for the environment. The water quality evaluation included fourteen physicochemical and microbiological parameters, out of which thermotolerant coliforms, nitrate, and total phosphorus exceeded a selected threshold value in every sample. Five metals were also included in the evaluation, Pb was the most frequent, followed by few detections of Cd, Cu, and Cr. Four water quality indexes (WQIs) were applied, two of them, the CCME WQI, based on physicochemical parameters, and the BMWP-CR WQI, based on benthic macroinvertebrate recount adapted to Costa Rican species, categorized all the sampling points as “bad” and “very bad” quality. This work of monitoring is important in the Latin American region, where there is a lack of information for regulation improvement and management decisions. These results showed poor management of the micro-catchments in this agricultural rural area.
Показать больше [+] Меньше [-]Degradation alternatives for a commercial fungicide in water: biological, photo-Fenton, and coupled biological photo-Fenton processes
2017
López-Loveira, Elsa | Ariganello, Federico | Medina, María Sara | Centrón, Daniela | Candal, Roberto | Curutchet, Gustavo
Imazalil (IMZ) is a widely used fungicide for the post-harvest treatment of citrus, classified as “likely to be carcinogenic in humans” for EPA, that can be only partially removed by conventional biological treatment. Consequently, specific or combined processes should be applied to prevent its release to the environment. Biological treatment with adapted microorganism consortium, photo-Fenton, and coupled biological photo-Fenton processes were tested as alternatives for the purification of water containing high concentration of the fungicide and the coadjutants present in the commercial formulation. IMZ-resistant consortium with the capacity to degrade IMZ in the presence of a C-rich co-substrate was isolated from sludge coming from a fruit packaging company wastewater treatment plant. This consortium was adapted to resist and degrade the organics present in photo-Fenton-oxidized IMZ water solution. Bacteria colonies from the consortia were isolated and identified. The effect of H₂O₂ initial concentration and dosage on IMZ degradation rate, average oxidation state (AOS), organic acid concentration, oxidation, and mineralization percentage after photo-Fenton process was determined. The application of biological treatment to the oxidized solutions notably decreased the total organic carbon (TOC) in solution. The effect of the oxidation degree, limited by H₂O₂ concentration and dosage, on the percentage of mineralization obtained after the biological treatment was determined and explained in terms of changes in AOS. The concentration of H₂O₂ necessary to eliminate IMZ by photo-Fenton and to reduce TOC and chemical oxygen demand (COD) by biological treatment, in order to allow the release of the effluents to rivers with different flows, was estimated.
Показать больше [+] Меньше [-]Arabinogalactan and glycyrrhizin based nanopesticides as novel delivery systems for plant protection
2020
Selyutina, Olga Yu | Khalikov, Salavat S. | Polyakov, Nikolay E.
During the past decade, nanotechnologies opened a new era in delivery of plant protection products through the development of nanosized controlled release systems, such as polymer nanoparticles, micelles, and so on using a wide variety of materials. To increase the pesticides penetration into the grain under the presowing seed treatment, a new approach based on non-covalent associate preparation with natural polysaccharides and oligosaccharides as delivery systems (DSs) was applied. Earlier, this approach was tested on antidote 1,8-naphthalic anhydride (NA). Enhancement of the NA solubility and penetration into the barley and wheat seeds had been demonstrated. In the present study, these DSs were used to prepare nanocomposites of pesticides (tebuconazole, imidacloprid, imazalil, prochloraz). The composite formation of the pesticides with poly- and oligosaccharides was proved by NMR relaxation method. Enhancement of the pesticides solubility and improvement of its penetration into the seeds of corn and rapeseeds has been detected. The strongest enhancement of penetration ability was observed for arabinogalactan nanocomposites: 5-folds for tebuconazole and imidacloprid, and more than 10-folds for imazalil and prochloraz. Our data show that the effect of polysaccharides and oligosaccharides on the nanopesticide penetration might be associated with the solubility enhancement, affinity of DSs to the surface of grains, and the modification of cell membranes by poly- and oligosaccharides.
Показать больше [+] Меньше [-]Cytogenetic and genotoxic assessment in Allium cepa exposed to imazalil fungicide
2020
Çıldır, Damla Selin | Liman, Recep
Imazalil (IMZ), a fungicide containing imidazole group, is extensively used for the prevention and treatment of fungal diseases in plants. Current study was performed to examine cyto-genotoxic potential of IMZ on Allium cepa roots by following Allium ana-telophase and single cell gel electrophoresis (comet) assays. The concentration which reduced the growth of the root tips of IMZ by 50% compared to the negative control group (EC₅₀) was found to be 1 μg/mL by Allium root growth inhibition test. 0.5, 1, and 2 μg/mL concentrations of IMZ were exposed to Allium roots for intervals of 24, 48, 72, and 96 h. 10 μg/mL of methyl methane sulfonate (MMS) and distilled water were used as control groups, both positive and negative. Statistical analysis was performed by using one-way ANOVA with Duncan’s multiple comparison tests at p ≤ 0.05 and Pearson correlation test at p = 0.01. IMZ showed cytotoxic effect by statistically decreasing root growth and mitotic index (MI) and also genotoxic effect by statistically increasing chromosomal aberrations (CAs) and DNA damage compared to the negative control group. With these cyto-genotoxic effects, it should be used carefully and further cyto-genotoxic mechanisms should be investigated along with other toxicity tests.
Показать больше [+] Меньше [-]Kinetic and equilibrium adsorption of two post-harvest fungicides onto copper-exchanged montmorillonite: synergic and antagonistic effects of both fungicides’ presence
2019
Gamba, Martina | Lázaro-Martínez, Juan M. | Olivelli, Melisa S. | Yarza, Florencia | Vega, Daniel | Curutchet, Gustavo | Torres Sánchez, Rosa M.
The simultaneous adsorption of both imazalil (IMZ) and thiabendazole (TBZ) fungicides in a Cu²⁺-exchanged Mt was studied in this work. Kinetic studies were used to determine the rate law which describes the adsorption of individual fungicides onto the adsorbent. Adsorption isotherm of individual and combined fungicides was done to evaluate synergic or antagonistic effects. The Mt-Cu material considerably improved TBZ and/or IMZ adsorption from aqueous suspensions with respect to raw Mt, leading to removal efficiencies higher than 99% after 10 min of contact time for TBZ and IMZ Cᵢ = 15 and 40 mg/L, respectively, when a solid dosage = 1 g/L was used. The adsorption sites involved were determined by a combination of X-ray diffraction (XRD) determinations and electron paramagnetic resonance (EPR), indicating that fungicides were bonded to Cu²⁺ cations, while the rate limiting step was the formation of coordination bonds. The adsorption mechanism proposed is that of ligand exchange between water and fungicide molecules in the metal coordination sphere. The single-crystal structure for the IMZ-Cu²⁺ complex indicated that four molecules were bounded to the copper centers, while two molecules of TBZ are bounded to copper explaining the higher IMZ uptake capacity for the Mt-Cu material. Graphical abstract
Показать больше [+] Меньше [-]TiO2-based (Fe3O4, SiO2, reduced graphene oxide) magnetically recoverable photocatalysts for imazalil degradation in a synthetic wastewater
2018
Santiago, Dunia E. | Pastrana-Martínez, Luisa M. | Pulido-Melián, Elisenda | Araña, Javier | Faria, Joaquim L. | Silva, Adrián M. T. | González-Díaz, Óscar | Doña-Rodríguez, José M.
Magnetite (Fe₃O₄), a core-shell material (SiO₂@Fe₃O₄), and reduced graphene oxide-Fe₃O₄ (referred as rGO-MN) were used as supports of a specific highly active TiO₂ photocatalyst. Thermal treatments at 200 or 450 °C, different atmospheres (air or N₂), and TiO₂:support weight ratios (1.0, 1.5, or 2.0) were investigated. X-ray diffractograms revealed that magnetite is not oxidized to hematite when the core-shell SiO₂@Fe₃O₄ material—or a N₂ atmosphere (instead of air) in the thermal treatment—was employed to prepare the TiO₂-based catalysts (the magnetic properties being preserved). The materials treated with N₂ were first tested for degradation of imazalil (a well-known fungicide) in deionized water. The best compromise between the photocatalytic activity, magnetic separation, and Fe leached (1.61 mg L⁻¹, i.e., below the threshold for water reuse in irrigation) was found for the magnetic catalyst prepared with SiO₂@Fe₃O₄, an intermediate TiO₂:support ratio (1.5), and treated at 200 °C under N₂ atmosphere (i.e., SiO₂@Fe₃O₄-EST-1.5-200-N₂). This material was then tested for the treatment of imazalil in a synthetic wastewater, SW (with a chemical composition simulating an effluent resulting from fruit postharvest activity). This SW has a pH of 4.2 and the experiments were carried out at this natural pH₀ and at neutral conditions (keeping pH at 7 along the reaction). The magnetic catalyst was more active than bare TiO₂ for the treatment of imazalil in SW at natural pH. Since Fe leaching was observed (3.53 mg L⁻¹), added H₂O₂ enhanced both imazalil degradation and mineralization. Conveniently, these catalysts can be readily recovered by using a conventional magnetic field, as demonstrated over three consecutive recycling runs. Graphical abstract % Imazalil conversion using different magnetic catalysts and comparison with bare TiO₂
Показать больше [+] Меньше [-]