Уточнить поиск
Результаты 1-10 из 57
Two low-toxic Klebsiella pneumoniae strains from gut of black soldier fly Hermetia illucens are multi-resistance to sulfonamides and cadmium
2022
Shi, Zhihui | Zhang, Jie | Jiang, Yijie | Wen, Yiting | Gao, Zhenghui | Deng, Wenhui | Yin, Yumeng | Zhu, Fen
In recent years, pollution of antibiotics and heavy metal has often been reported in organic wastes. Saprophytic insects have been recorded as biological control agents in organic waste management. During organic waste conversion, the intestinal bacteria of the saprophytic insects play an important role in digestion, physiology, immunity and prevention of pathogen colonization. Black soldier fly (BSF) Hermetia illucens has been widely used as saprophytic insects and showed tolerance to sulfonamides (SAs) and cadmium (Cd). Diversity and changes in gut microbiota of black soldier fly larvae (BSFL) were evaluated through 16S rRNA high-throughput sequencing, and a decrease in diversity of gut microbiota along with an increase in SAs stress was recorded. Major members identified were Actinomycetaceae, Enterobacteriaceae, and Enterococcaceae. And fourteen multi-resistance Klebsiella pneumoniae strains were isolated. Two strains BSFL7-B-5 (from middle midgut of 7-day BSFL) and BSFL11-C-1 (from posterior midgut of 11-day BSFL) were found to be low-toxic and multi-resistance. The adsorption rate of SAs in 5 mg/kg solutions by these two strains reached 65.2% and 61.6%, respectively. Adsorption rate of Cd in 20 mg/L solutions was 77.2% for BSFL7-B-5. The strain BSFL11-C-1 showed higher than 70% adsorption rates of Cd in 20, 30 and 40 mg/L solutions. This study revealed that the presence of multi-resistance bacterial strains in the gut of BSFL helped the larvae against SAs or Cd stress. After determining how and where they are used, selected BSFL gut bacterial strains might be utilized in managing SAs or Cd contamination at suitable concentrations in the future.
Показать больше [+] Меньше [-]Exposure to dechlorane 602 induces perturbation of gut immunity and microbiota in female mice
2022
Li, Yunping | Guo, Tai L. | Xie, Heidi Qunhui | Xu, Li | Liu, Yin | Zheng, Liping | Yu, Shuyuan | Chen, Guomin | Ji, Jiajia | Jiang, Shuai | Xu, Dan | Hang, Xiaoming | Zhao, Bin
The homeostasis of gut immunity and microbiota are associated with the health of the gut. Dechlorane 602 (Dec 602) with food web magnification potential has been detected in daily food. People who were orally exposed to Dec 602 may encounter increased risk of health problems in the gut. In order to reveal the influence of short-term exposure of Dec 602 on gut immunity and microbiota, adult female C57BL/6 mice were administered orally with Dec 602 (low/high doses: 1.0/10.0 μg/kg body weight per day) for 7 days. Lymphocytes were examined by flow cytometry. Gut microbiota was measured by 16S rRNA gene sequencing. Results showed that fecal IgA was upregulated after exposure to the high dose of Dec 602, suggesting that there might be inflammation in the gut. Then, changes of immune cells in mesenteric lymph nodes and colonic lamina propria were examined. We found that exposure to the high dose of Dec 602 decreased the percentages of the anti-inflammatory T regulatory cells in mesenteric lymph nodes. In colonic lamina propria, the production of gut protective cytokine interleukin-22 by CD4⁺ T cells was decreased, and a decreased trend of interleukin-22 production was also observed in type 3 innate lymphoid cells in the high dose group. Furthermore, an altered microbiota composition toward inflammation in the gut was observed after exposure to Dec 602. Additionally, the altered microbiota correlated with changes of immune parameters, suggesting that there were interactions between influenced microbiota and immune parameters after exposure to Dec 602. Taken together, short-term exposure to Dec 602 induced gut immunity and microbiota perturbations, and this might be the mechanisms for Dec 602 to elicit inflammation in the gut.
Показать больше [+] Меньше [-]Microplastic fibers transfer from the water to the internal fluid of the sea cucumber Apostichopus japonicus
2020
Mohsen, Mohamed | Zhang, Libin | Sun, Lina | Lin, Chenggang | Wang, Qing | Yang, Hongsheng
Microplastics (MPs) are small plastic particles less than 5 mm in diameter. MPs in the form of microfibers (MFs) are widely detected in aquatic habitats and are of high environmental concern. Despite many reports on the effects of MFs on marine animals, their effect on sea cucumbers is still unclear. In addition, our previous filed study has shown that MFs may transfer to the coelomic fluid of the sea cucumber Apostichopus japonicus (A. japonicus). Here, we show how MFs transfer to the coelomic fluid of the sea cucumber. We captured the MFs during their transfer from the water to the coelomic fluid through the respiratory tree. A. japonicus ingested in the MFs along with the water during respiration; the MFs got stuck in the respiratory tree or transferred to the coelomic fluid. The transferred MFs increased during 72 h of exposure and persisted for 72 h after the transfer to clean water. Among the immunity indices, lysozyme (LZM) levels increased in response to the transferred MFs, which confirms the defensive role of LZMs against strange substances. Additionally, non-significantly decreased levels of total antioxidant capacity (T-AOC), malondialdehyde (MDA), peroxidase (POD) and phenol oxidase (PPO) were observed at 24 h and 48 h post-exposure, suggesting minimal oxidative imbalance. Furthermore, there were no significant changes in the speed and the total distance moved by A. japonicus post MFs transfer. This study revealed that MFs transfer and accumulate in the coelomic fluid of A. japonicus.
Показать больше [+] Меньше [-]Proteomic analysis revealed gender-specific responses of mussels (Mytilus galloprovincialis) to trichloropropyl phosphate (TCPP) exposure
2020
Zhong, Mingyu | Wu, Huifeng | Li, Fei | Shan, Xiujuan | Ji, Chenglong
Trichloropropyl phosphate (TCPP) is a halogenated organophosphate ester that is widely used as flame retardants and plasticizers. In this study, gender-specific accumulation and responses in mussel Mytilus galloprovincialis to TCPP exposure were focused and highlighted. After TCPP (100 nmol L⁻¹) exposure for 42 days, male mussels showed similar average bioaccumulation (37.14 ± 6.09 nmol g⁻¹ fat weight (fw)) of TCPP with that in female mussels (32.28 ± 4.49 nmol g⁻¹ fw). Proteomic analysis identified 219 differentially expressed proteins (DEPs) between male and female mussels in control group. There were 52 and 54 DEPs induced by TCPP in male and female mussels, respectively. Interestingly, gender-specific DEPs included 37 and 41 DEPs induced by TCPP in male and female mussels, respectively. The proteomic differences between male and female mussels were related to protein synthesis and degradation, energy metabolism, and functions of cytoskeleton and motor proteins. TCPP influenced protein synthesis, energy metabolism, cytoskeleton functions, immunity, and reproduction in both male and female mussels. Protein-protein interaction (PPI) networks indicated that protein synthesis and energy metabolism were the main biological processes influenced by TCPP. However, DEPs involved in these processes and their interaction patterns were quite different between male and female mussels. Basically, twelve ribosome DEPs which directly or indirectly interacted were found in protein synthesis in TCPP-exposed male mussels, while only 3 ribosome DEPs (not interacted) in TCPP-exposed female mussels. In energy metabolism, only 4 DEPs (with the relatively simple interaction pattern) mainly resided in fatty acid metabolism, butanoate/propanoate metabolism and glucose metabolism were discovered in TCPP-exposed male mussels, and more DEPs (with multiple interactions) functioned in TCA cycle and pyruvate/glyoxylate/dicarboxylate metabolism were found in TCCP-exposed female mussels. Taken together, TCPP induced gender-specific toxicological effects in mussels, which may shed new lights on further understanding the toxicological mechanisms of TCPP in aquatic organisms.
Показать больше [+] Меньше [-]Ants and their nests as indicators for industrial heavy metal contamination
2018
Skaldina, Oksana | Peräniemi, Sirpa | Sorvari, Jouni
Ants accumulate heavy metals and respond to pollution with modification in species composition, community structure, altered behaviour and immunity. However, the levels of heavy metals in ants’ nests and explicit individual-level responses towards heavy metals have not been revealed. We found that red wood ants Formica lugubris accumulate high and correlated values of such heavy metals as Al, Cd, Co, Cu, Fe, Ni, Pb and Zn both in ants and nest material near cobalt smelter in Finland. Relative differences in metal concentrations were higher in nests than in ants. The highest values were obtained for elements such as Co (36.6), Zn (14.9), Cd (9.7), Pb (8.5), Cu (7.4), Ni (6.4), As (4.7), Cr (2.9) and Fe (2.4) in nest material, and Co (32.7), Cd (6.3), Pb (6), Fe (2.8), Ni (2.9) and Zn (2.1) in ants. In industrial and reference areas, ants have no differences in size, but differed in dry and residual body mass. In polluted areas, F. lugubris had less melanised heads, but not thoraxes. The sensitivity of cuticular colouration in red wood ants subjected to heavy metal pollution might be related to metal-binding properties of melanins. The overall results are useful for the improvement of biomonitoring techniques using ants as indicators of industrial contamination and for further discovery of novel ecotoxicological biomarkers.
Показать больше [+] Меньше [-]Microcystin-leucine arginine (MC-LR) induces bone loss and impairs bone micro-architecture by modulating host immunity in mice: Implications for bone health
2018
Dar, Hamid Y. | Lone, Yaqoob | Koiri, Raj Kumar | Mishra, Pradyumna K. | Srivastava, Rupesh K.
Osteoporosis or enhanced bone loss is one of the most commonly occurring bone conditions in the world, responsible for higher incidence of fractures leading to increased morbidity and mortality in adults. Bone loss is affected by various environmental factors including diet, age, drugs, toxins etc. Microcystins are toxins produced by cyanobacteria with microcystin-LR being the most abundantly found around the world effecting both human and animal health. The present study demonstrates that MC-LR treatment induces bone loss and impairs both trabecular and cortical bone microarchitecture along with decreasing the mineral density and heterogeneity of bones in mice. This effect of MC-LR was found due to its immunomodulatory effects on the host immune system, wherein MC-LR skews both T cell (CD4+ and CD8+ T cells) and B cell populations in various lymphoid tissues. MC-LR further was found to significantly enhance the levels of osteoclastogenic cytokines (IL-6, IL-17 and TNF-α) along with simultaneously decreasing the levels of anti-osteoclastogenic cytokines (IL-10 and IFN-γ). Taken together, our study for the first time establishes a direct link between MC-LR intake and enhanced bone loss thereby giving a strong impetus to the naïve field of “osteo-toxicology”, to delineate the effects of various toxins (including cyanotoxins) on bone health.
Показать больше [+] Меньше [-]Variation in immune function, body condition, and feather corticosterone in nestling Tree Swallows (Tachycineta bicolor) on reclaimed wetlands in the Athabasca oil sands, Alberta, Canada
2010
Harms, N Jane | Fairhurst, Graham D. | Bortolotti, Gary R. | Smits, Judit E.G.
In the Athabasca oil sands region of northern Alberta, mining companies are evaluating reclamation using constructed wetlands for integration of tailings. From May to July 2008, reproductive performance of 40 breeding pairs of tree swallows (Tachycineta bicolor), plus growth and survival of nestlings, was measured on three reclaimed wetlands on two oil sands leases. A subset of nestlings was examined for i) feather corticosterone levels, ii) delayed-type hypersensitivity response, and iii) innate immune function. Nestlings on one of two wetlands created with oil sands process affected material (OSPM) were heavier and had greater wing-lengths, and mounted a stronger delayed-type hypersensitivity response compared those on the reference wetland. Corticosterone was significantly higher in male nestlings on one of two OSPM-containing wetland compared to the reference wetland. Body condition of 12-day-old female nestlings was inversely related to feather corticosterone. Under ideal weather conditions, reclaimed wetlands can support healthy populations of aerially-insectivorous birds. Under ideal weather conditions, tree swallow nestlings on reclaimed OSPM-affected wetlands are in good body condition and mount strong cell-mediated immune responses.
Показать больше [+] Меньше [-]Hemocytes of bivalve mollusks as cellular models in toxicological studies of metals and metal-based nanomaterials
2022
Weng, Nanyan | Meng, Jie | Huo, Shouliang | Wu, Fengchang | Wang, Wen-Xiong
Understanding the impacts of environmental pollutants on immune systems is indispensable in ecological and health risk assessments due to the significance of normal immunological functions in all living organisms. Bivalves as sentinel organisms with vital ecological importance are widely distributed in aquatic environments and their innate immune systems are the sensitive targets of environmental pollutants. As the central component of innate immunity, bivalve hemocytes are endowed with specialized endolysosomal systems for particle internalization and metal detoxification. These intrinsic biological features make them a unique cellular model for metal- and nano-immunotoxicology research. In this review, we firstly provided a general overview of bivalve's innate immunity and the classification and immune functions of hemocytes. We then summarized the recent progress on the interactions of metals and nanoparticles with bivalve hemocytes, with emphasis on the involvement of hemocytes in metal regulation and detoxification, the interactions of hemocytes and nanoparticles at eco/bio-nano interface and hemocyte-mediated immune responses to the exposure of metals and nanoparticles. Finally, we proposed the key knowledge gaps and future research priorities in deciphering the fundamental biological processes of the interactions of environmental pollutants with the innate immune system of bivalves as well as in developing bivalve hemocytes into a promising cellular model for nano-immuno-safety assessment.
Показать больше [+] Меньше [-]Combined toxicity assessment of myclobutanil and thiamethoxam to zebrafish embryos employing multi-endpoints
2021
Shen, Weifeng | Yang, Guiling | Guo, Qi | Lv, Lu | Liu, Li | Wang, Xinquan | Lou, Bao | Wang, Qiang | Wang, Yanhua
It is necessary to understand the interactions between different pesticides in ecotoxicology because pesticides never appear as individual compounds but rather in combinations with other compounds. In this study, we planned to explicate the combined toxic effect of myclobutanil (MYC) and thiamethoxam (THI) on the zebrafish (Danio rerio) by adopting multiple biomarkers. Results unraveled that the 96-h LC₅₀ values of MYC to D. rerio at various life phases ranged from 5.2 to 10.3 mg L⁻¹, which were lower than those of THI ranging from 147 to 246 mg L⁻¹. Combinations of MYC and THI exhibited synergetic toxicity to zebrafish embryos. The activities of antioxidative enzymes (T-SOD, Cu/Zn-SOD and POD) and detoxification enzyme (GST) were obviously varied in most of the MYC, THI and combined exposures compared to the control. The mRNA expressions of eight genes (Cu-sod, cas3, il-8, cxcl, erα, crh, cyp17 and dio1) involved in antioxidation, apoptosis, immunity and endocrine were obviously altered in the combined exposure of MYC and THI compared to their individual exposures. Our findings hinted the threats when YMC and THI co-existed, which would be beneficial for the risk assessments of pesticide mixtures.
Показать больше [+] Меньше [-]Guadipyr, a new insecticide, induces microbiota dysbiosis and immune disorders in the midgut of silkworms (Bombyx mori)
2021
Hou, Jiayin | Yu, Jianzhong | Qin, Zhaohai | Liu, Xinju | Zhao, Xueping | Hu, Xiuqing | Yu, Ruixian | Wang, Qiang | Yang, Jingying | Shi, Yan | Chen, Liezhong
Guadipyr, which combines neonicotinoid and semicarbazone functional groups in one molecule, exhibits good activity on several pests and high acute and chronic toxicity to silkworms (Bombyx mori). In this report, the effects of low-dose guadipyr on the midgut microbiota and immune system of silkworms were studied. Results showed that the structure and richness of the midgut microbiota of silkworms were altered after being treated with 5.25 mg/L (1/10 of LC₅₀) of guadipyr. The abundance of Pseudomonas was evidently increased, whereas Curvibacter was substantially reduced, which might be related to the growth and immunity of silkworms. The expression of key genes in the Toll, IMD, and JAK/STAT pathways, which ultimately led to the downregulation of antimicrobial peptide genes (AMPs), such as CecA, Defensin1, Leb, and glv2, was reduced upon guadipyr exposure. Simultaneously, the suppression of steroid hormone 20-hydroxyecdysone receptor and response genes, such as BR-C Z4, was detected in the exposed groups. The decreased expression of these immune regulatory pathway-related and 20-hydroxyecdysone signal pathway-related genes indicated that the immune system of silkworms was affected by low-dose guadipyr. Our results revealed the negative effects of guadipyr on silkworms and highlighted the unneglectable toxicity of low-dose guadipyr to this economic insect. Given the risk, it is necessary to control the application of guadipyr in or around the mulberry fields.
Показать больше [+] Меньше [-]