Уточнить поиск
Результаты 1-10 из 212
Bioaccumulation, genotoxicity, and risks to native fish species from inorganic contaminants in the Pantanal Sul-Mato-Grossense, Brazil
2022
Viana, Lucilene Finoto | Crispim, Bruno do Amaral | Kummrow, Fábio | Nascimento, Valter Aragão do | Melo, Elaine Silva de Pádua | de Lima, Nathalya Alice | Barufatti, Alexeia
The Aquidauana River is one of the most important rivers in the Pantanal region, Brazil. However, its waters have been contaminated by nearby anthropogenic activities, threatening native fish species. In this study, our objectives were: 1) to determine the concentrations of Al, As, Cd, Cu, Fe, Mn, Ni, Pb, and Zn in water and sediment samples from the Aquidauana River and to assess the risks posed to aquatic biota; 2) to quantify the concentration of these elements in muscle and liver tissue samples from four native fish species; 3) to evaluate the potential bioaccumulation of inorganic elements in the muscles and liver; and 4) to investigate genotoxicity biomarkers and their association with the inorganic element concentrations present in the muscle tissue. Water and fish samples were collected in November 2020. The concentrations of Al, As, Cd, Cu, Fe, and Pb in the water samples were in disagreement with the Brazilian legislation and presented risks to the aquatic biota. In terms of mixtures of inorganic elements, there was a great increase in the risk to biota. The As concentration did not meet the Brazilian standard for sediments in the sample collected at sampling site 6. The concentrations of Cd and Pb in the muscle tissue of Hypostomus regani, Prochilodus lineatus, Brycon hilarii, and Mylossoma duriventre exceeded the Brazilian standards for human consumption. H. regani showed greater genotoxic damage, and the higher the Al and Fe concentrations in the muscle tissue, the higher the frequencies of lobulated nuclei and nuclear invaginations. Together, our results demonstrate the negative impacts on native fish species from the Aquidauana River contamination and indicate risks to Pantanal biodiversity.
Показать больше [+] Меньше [-]Effects of river-lake disconnection and eutrophication on freshwater mollusc assemblages in floodplain lakes: Loss of congeneric species leads to changes in both assemblage composition and taxonomic relatedness
2022
Jiang, Xiaoming | Li, Zhengfei | Shu, Fengyue | Chen, Jing
River floodplain ecosystems host one of the highest freshwater molluscan biodiversity on Earth. However, multiple human disturbances, such as loss of hydrological connectivity and deterioration of water quality, are seriously threatening most floodplain lakes throughout the world. Given the high imperilment rate of freshwater molluscs but the scarcity of studies examining the anthropogenic effects on this fauna, we test the response of mollusc assemblages to river-lake disconnection and eutrophication in 30 lakes in the Yangtze River floodplain, China. The species richness of entire Mollusca, Gastropoda and Bivalvia and 6 dominant families were all much lower at disconnected lakes than that in connected lakes, and decreased with increasing water eutrophication. The assemblage structure differed significantly among four lake groups for datasets based on entire Mollusca, Gastropoda and Bivalvia, indicating the serious impacts of hydrological disconnection and eutrophication. Moreover, the connected lakes showed significantly lower values of average taxonomic distinctness (Δ⁺) but higher values of variation in taxonomic distinctness (Λ⁺) than disconnected lakes. Such variations were triggered by the extirpation of congeneric and endemic species (mainly from families Unionidae and Viviparidae), which giving a waring of the loss of mollusc endemism in this region. In general, the present study showed that river-lake disconnection and deterioration of water quality resulted in serious biodiversity declines of both gastropods and bivalves in the Yangtze River floodplain lakes. A systematic approach including restoration of river-lake connectivity and habitats and improvement of water quality should be implemented in the conservation planning in this large river floodplain.
Показать больше [+] Меньше [-]Can C-budget of natural capital be restored through conservation agriculture in a tropical and subtropical environment?
2022
de Moraes Sá, João Carlos | Lal, R. | Briedis, Clever | de Oliveira Ferreira, Ademir | Tivet, Florent | Inagaki, Thiago Massao | Potma Gonçalves, Daniel Ruiz | Canalli, Lutécia Beatriz | Burkner dos Santos, Josiane | Romaniw, Jucimare
Conservation agriculture through no-till based on cropping systems with high biomass-C input, is a strategy to restoring the carbon (C) lost from natural capital by conversion to agricultural land. We hypothesize that cropping systems based on quantity, diversity and frequency of biomass-C input above soil C dynamic equilibrium level can recover the natural capital. The objectives of this study were to: i) assess the C-budget of land use change for two contrasting climatic environments, ii) estimate the C turnover time of the natural capital through no-till cropping systems, and iii) determine the C pathway since soil under native vegetation to no-till cropping systems. In a subtropical and tropical environment, three types of land use were used: a) undisturbed soil under native vegetation as the reference of pristine level; b) degraded soil through continuous tillage; and c) soil under continuous no-till cropping system with high biomass-C input. At the subtropical environment, the soil under continuous tillage caused loss of 25.4 Mg C ha⁻¹ in the 0–40 cm layer over 29 years. Of this, 17 Mg C ha⁻¹ was transferred into the 40–100 cm layers, resulting in the net negative C balance for 0–100 cm layer of 8.4 Mg C ha⁻¹ with an environmental cost of USD 1968 ha⁻¹. The 0.59 Mg C ha⁻¹ yr⁻¹ sequestration rate by no-till cropping system promote the C turnover time (soil and vegetation) of 77 years. For tropical environment, the soil C losses reached 27.0 Mg C ha⁻¹ in the 0–100 cm layer over 8 years, with the environmental cost of USD 6155 ha⁻¹, and the natural capital turnover time through C sequestration rate of 2.15 Mg C ha⁻¹ yr⁻¹ was 49 years. The results indicated that the particulate organic C and mineral associate organic C fractions are the indicators of losses and restoration of C and leading C pathway to recover natural capital through no-till cropping systems.
Показать больше [+] Меньше [-]Wild longnose dace downstream of wastewater treatment plants display an obese phenotype
2021
Lazaro-Côté, Analisa | Faught, Erin | Jackson, Leland J. | Vijayan, Mathilakath M.
Wild fish living downstream of wastewater treatment plants (WWTPs) often have increased body condition factors or body mass indices compared to upstream fish. This observation has been largely attributed to increased nutrient loading and food availability around wastewater effluent outflows. While a higher condition factor in fish is generally considered a predictor of healthy ecosystems, the metabolic status and capacity of the animals downstream of WWTPs may be a better predictor of fitness and potential population level effects. To address this, we sampled wild longnose dace (Rhinichthys cataractae), a native species in North American waterways, from sites upstream and downstream of WWTPs. Downstream fish had higher body mass indices, which corresponded with higher nutrient (lipid, protein, and glycogen) storage in somatic tissues compared to upstream fish. Liver transcriptome analysis revealed metabolic reprogramming favoring lipid synthesis, including higher hepatic triglyceride levels and transcript abundance of targeted lipogenic genes. This suggests that effluent exposure-mediated obesity in dace is a result of changes at the transcriptional level. To determine potential ecological consequences, we subjected these fish to an acute stressor in situ to determine their stress performance. Downstream fish failed to mobilize metabolites post-stress, and showed a reduction in liver aerobic and anaerobic metabolic capacity. Taken together, fish living downstream of WWTPs exhibit a greater lipid accumulation that results in metabolic disruption and may compromise the ability of these fish to cope with subsequent environmental and/or anthropogenic stressors.
Показать больше [+] Меньше [-]Effects of L-Glufosinate-ammonium and temperature on reproduction controlled by neuroendocrine system in lizard (Eremias argus)
2020
Zhang, Luyao | Chen, Li | Meng, Zhiyuan | Jia, Ming | Li, Ruisheng | Yan, Sen | Tian, Sinuo | Zhou, Zhiqiang | Diao, Jinling
In the context of global warming, an important issue is that many pesticides become more toxic, putting non-target organisms at higher risk of pesticide exposure. Eremias argus (a native Chinese lizard) was selected as animal model in this study. As a kind of poikilothermic vertebrate, E.argus is sensitive to temperature change. The experimental design [(with or without L-Glufosinate-ammonium (L-GLA) pollution × two temperatures (25 and 30 °C)] was used in this study for 90 days to identify the chronic effects of the pesticide–temperature interaction on the lizards’ neuroendocrine-regulated reproduction. Survival rate, body weight, clutch characteristics, testicular histopathology, the content of neurotransmitters and related enzyme activity, the level of sex steroid, the expression of Heat shock protein 70 (HSP70), antioxidant system, the accumulation and degradation of L-GLA were examined. Results showed that L-GLA disrupt reproduction of lizards through hypothalamus-pituitary-gonad (HPG) axis. In addition, temperature can not only change the environmental behavior of pesticides, but also alter the physiological characteristics of lizards. Thus, our results emphasized that temperature is an essential abiotic factor that should not be overlooked in ecotoxicological studies.
Показать больше [+] Меньше [-]Effects of soil nutrient variability and competitor identify on growth and co-existence among invasive alien and native clonal plants
2020
Zhao, Cong-Ying | Liu, Yuanyuan | Shi, Xue-Ping | Wang, Yong-Jian
Changes in soil nutrients variability could significantly interact with other global change processes (such as community dynamics, biological invasion). Global exchange and accumulation of alien species caused environmental and economic threats in the introduced ranges. Their invasion success or not in local plant communities is largely depended on the interactions and competitive outcomes with other species and environmental conditions. Here, we tested whether the interactions of nutrient variability and competitor identity influence plant performance, potential invasion success of invasive species and their co-existence with native species. In both greenhouse and field experiment, we subjected three congeneric and naturally co-occurring pairs of invasive alien and native clonal plants in China to different nutrient variability (constant high, multiple pulses and/or single pulse) and competitor identity (intra-specific competitors, native competitors, invasive competitors and both native & invasive competitors). Our results showed that total biomass or the increase of cover of invasive species was significantly larger than those of the native species regardless of competitor identity. Native competitors significantly decreased biomass proportion of native species, but did not affect that of invasive species. The whole community with invasive target species accumulated more total biomass than with native species under multiple pulses nutrient when with the native competitors. Invasive species produced significantly higher biomass proportion than natives under all competitor identity treatments except for native & invasive competitors. Multiple mixed competitors (i.e. native & invasive competitors) decreased the plant performance and dominance of invasive target species, to some extent, thus construction of multi-species competition might facilitate coexistence of native and invasive species in communities. Interactions between native competitors or native & invasive competitors, and nutrient variability play important roles in plant performance and potential invasion success in communities. Multiple invasional interference may have significant implications for the co-existence of invasive and native species, and for management of invasive species.
Показать больше [+] Меньше [-]Multi-criteria decision analysis of optimal planting for enhancing phytoremediation of trace heavy metals in mining sites under interval residual contaminant concentrations
2019
Lu, Jingzhao | Lu, Hongwei | Li, Jing | Liu, Jia | Feng, Sansan | Guan, Yanlong
As one of the most cost-effective and sustainable methods for contaminants' removal, sequestration and/or detoxification, phytoremediation has already captured comprehensive attention worldwide. Nevertheless, the accurate effects of various spatial pattern in enhancing phytoremediation efficiency is not yet clear, especially for the polluted mining areas. This study designed nine planting patterns (monocropping, double intercropping and triple intercropping) of three indigenous plant species (Setaria viridis (L.), Echinochloa crus-galli (L.) and Phragmites australis (Cav.) Trin. ex Steud.) to further explore the effects of plants spatial pattern on phytoremediation efficiency. Considering the uncertainties of the residual contaminants' concentration (RCC) caused by soil anisotropy, permeability and land types, the interval transformation was introduced into the plant uptake model to simulate the remediation efficiency. Then multi-criteria decision analysis (MCDA) were applied to optimal the planting patterns, with the help of criteria of (a) the amount of heavy metal absorption; (b) the concentration of residual contaminant in soil; (c) root tolerance of heavy metals; (d) the total investment cost. Results showed that (1) the highest concentrations of Zn, Cd, and Pb of the polluted area were 7320.02, 14.30, 1650.51 mg kg⁻¹ (2) During the 180 days simulation, the highest RMSE of residue trace metals in soil are 3.02(Zn), 2.67(Pb), 2.89(Cd), respectively. (3) The result of IMCDA shows that the planting patterns of Setaria viridis, Echinochloa crus-galli and Phragmites australis in alternative a9 (269 mg kg⁻¹ year⁻¹) had the highest absorption rate of heavy metals compared with a7 (235 mg kg⁻¹ year⁻¹) and a2 (240 mg kg⁻¹ year⁻¹). After 20 years of remediation, the simulated RCC in a9 is far below the national standard, and the root toxicity is 0.12 (EC ≤ EC₂₀). In general, the optimal alternative derived from interval residual contaminant concentration can effectively express the dynamic of contaminant distribution and then can be effectively employed to evaluate the sustainable remediation methods.
Показать больше [+] Меньше [-]Variation in rhizosphere microbiota correlates with edaphic factor in an abandoned antimony tailing dump
2019
Xiao, Enzong | Ning, Zengping | Xiao, Tangfu | Sun, Weimin | Qiu, Yaqun | Zhang, Yu | Chan, Kit-Yee | Gou, Zilun | Chen, Yuxiao
The distribution pattern of root-associated bacteria in native plant growth in tailing dumps with extreme conditions remains poorly understood and largely unexplored. Herein we chose a native plant, Bidens bipinnata, growing on both an Sb tailing dump (WKA) and adjacent normal soils (WKC) to in-depth understand the distribution pattern of root-associated bacteria and their responses on environmental factors. We found that the rhizosphere microbial diversity indices in the tailing dump were significantly different from that in the adjacent soil, and that such variation was significantly related with soil nutrients (TC, TOC, TN) and metal(loid) concentrations (Sb and As). Some dominant genera were significant enriched in WKA, suggesting their adaption to harsh environments. Notably, these genera are proposed to be involved in nutrient and metal(liod) cycling, such as nitrogen fixing (Devosia, Cellvibrio, Lysobacter, and Cohnella), P solubilizing (Flavobacterium), and Sb and As oxidation (Paenibacillus, Bacillus, Pseudomonas, and Thiobacillus). Our results suggest that certain root-associated bacteria in tailing dump were governed by soil edaphic factors and play important ecological roles in nutrient amendments and metal cycling for the successful colonization of Bidens bipinnata in this tailing dump.
Показать больше [+] Меньше [-]Phosphate treatment alleviated acute phytotoxicity of heavy metals in sulfidic Pb-Zn mine tailings
2019
Saavedra-Mella, Felipe | Liu, Yunjia | Southam, Gordon | Huang, Longbin
Phytostabilization of sulfidic PbZn tailing landscapes may be one of interim options of tailings management, but which is limited by acute phytotoxicity of heavy metals in the tailings. The present study aimed to investigate the effectiveness of soluble phosphate (i.e., K2HPO4) in immobilizing soluble Pb, Cd and Zn and lowering their acute phytotoxicity. The addition of soluble phosphate improved the growth of native plants Acacia chisholmii and survival rate of A. ligulata, where the latter exhibited 100% survival rate. This was in contrast to effects of conventional organic amendment in the tailings on metal solubility (e.g., elevated metal levels in porewater) and plant survival (e.g., only 42%). Organic amendment with mulch did not lower the levels of water-soluble Cd, Pb and Zn and their concentrations in plant tissues after 56 days of plant growth in the treatment. In contrast, the tailings amended with K2HPO4 significantly decreased metal concentrations in the porewater and plant tissues by about 80–92% and 56–88%, respectively. The metal immobilization by phosphate was due to the formation of insoluble or sparingly soluble metal (Pb, Cd and Zn)-phosphate minerals in the tailings with circumneutral pH conditions, as revealed by using X-ray diffraction and scanning electron microanalyses. The reduced metal concentrations in roots and shoots of Acacia species after direct root contact with the K2HPO4 amended tailings suggested that metals (i.e., Pb, Cd and Zn) were effectively immobilized by the phosphate treatment of the tailings. These findings indicate that addition of high dosage of soluble phosphate may provide a low cost option to treat sulfidic PbZn tailings for rapid phytostabilization of the tailings surface, as an interim option to manage environmental risks of sulfidic PbZn tailings.
Показать больше [+] Меньше [-]Microstructural characteristics of naturally formed hardpan capping sulfidic copper-lead-zinc tailings
2018
Liu, Yunjia | Wu, Songlin | Nguyen, Tuan A.H. | Southam, Gordon | Chan, Ting-Shan | Lu, Ying-Rui | Huang, Longbin
A massive and dense textured layer (ca. 35–50 cm thick) of hardpan was uncovered at the top layer, which capped the unweathered sulfidic Cu-Pb-Zn tailings in depth and physically supported gravelly soil root zones sustaining native vegetation for more than a decade. For the purpose of understanding functional roles of the hardpan layer in the cover profile, the present study has characterized the microstructures of the hardpan profile at different depth compared with the tailings underneath the hardpans. A suit of microspectroscopic technologies was deployed to examine the hardpan samples, including field emission-scanning electron microscopy coupled with energy dispersive spectroscopy (FE-SEM-EDS), X-ray diffraction (XRD) and synchrotron-based X-ray absorption fine structure spectroscopy (XAFS). The XRD and Fe K-edge XAFS analysis revealed that pyrite in the tailings had been largely oxidised, while goethite and ferrihydrite had extensively accumulated in the hardpan. The percentage of Fe-phyllosilicates (e.g., biotite and illite) decreased within the hardpan profile compared to the unweathered tailings beneath the hardpan. The FE-SEM-EDS analysis showed that the fine-grained Ca-sulfate (possibly gypsum) evaporites appeared as platelet-shaped that deposited around pyrite, dolomite, and crystalline gypsum particles, while Fe-Si gels exhibited a needle-like texture that aggregated minerals together and produced contiguous coating on pyrite surfaces. These microstructural findings suggest that the weathering of pyrite and Fe-phyllosilicates coupled with dolomite dissolution may have contributed to the formation of Ca-sulfate/gypsum evaporites and Fe-Si gels. These findings have among the first to uncover the microstructure of hardpan formed at the top layer of sulfidic Cu-Pb-Zn tailings, which physically capped the unweathered tailings in depth and supported root zones and native vegetation under semi-arid climatic conditions.
Показать больше [+] Меньше [-]