Уточнить поиск
Результаты 1-10 из 34
HCH and lindane contaminated sites: European and global need for a permanent solution for a long-time neglected issue
2019
Vijgen, John | de Borst, Bram | Weber, Roland | Stobiecki, Tomasz | Forter, Martin
During the last 70 years 1, 2, 3, 4, 5, 6-Hexachlorocyclohexane (HCH) has been one of the most extensively used pesticides. Only the gamma-isomer has insecticidal properties. For the marketing of gamma-HCH (lindane) the other 85% HCH isomers which are formed as by-products during HCH production had to be separated and became finally hazardous waste. For each tonne of lindane 8–12 tonnes of waste HCH isomers were produced and production of the approximately 600,000 t of lindane has therefore generated 4.8 to 7.2 million tonnes of HCH/POPs waste. These waste isomers were mostly buried in uncontrolled dumps at many sites around the world. The stockpiles and the large contaminated sites can be categorized as “mega-sites”. Countries with HCH legacy problems include Albania, Argentina, Austria, Azerbaijan, Brazil, China, Croatia, Czech Republic, France, Germany, Hungary, India, Italy, Japan, Macedonia, Nigeria, Poland, Romania, Russia, Slovakia, South Africa, Spain, Switzerland, Turkey, The Netherlands, UK, Ukraine and the USA.As lindane and alpha- and beta-HCH have been listed as POPs in the Stockholm Convention since August 2010, the problem of stockpiles of HCH waste is now documented and globally acknowledged.This article describes briefly the legacy of HCH and lindane that has been created. Three of the mega-sites are being discussed and demonstrate the increase in pollution footprint over time. Recent developments in the EU (including the Sabinanigo project in Aragon/Spain) and on a global level are presented. A short overview is given on lack of activities and on actions of countries within their obligations as Parties of the Stockholm Convention. Furthermore, current country activities supported by the Global Environment Facility (GEF), the “financing mechanism” of the convention, are listed. Finally, conclusions and recommendations are formulated that will contribute to the solution of this problem over the next 25 years.
Показать больше [+] Меньше [-]Establishment of a dietary exposure assay for evaluating the toxicity of insecticidal compounds to Apolygus lucorum (Hemiptera: Miridae)
2018
Zhao, Man | Li, Yunhe | Yuan, Xiangdong | Liang, Gemei | Wang, Bingjie | Liu, Chen | Khaing, Myint Myint
With the commercialization of transgenic cotton that expresses Bt (Bacillus thuringiensis) insecticidal proteins, mirid bugs have become key pests in cotton and maize fields in China. Genetically engineered (GE) crops for controlling mirids are unavailable owing to a lack of suitable insecticidal genes. In this study, we developed and validated a dietary exposure assay for screening insecticidal compounds and for assessing the potential effects of insecticidal proteins produced by GE plants on Apolygus lucorum, one of the main mirid pests of Bt cotton and Bt maize. Diets containing potassium arsenate (PA) or the cysteine protease inhibitor E-64 were used as positive controls for validating the efficacy of the dietary exposure assay. The results showed that with increasing concentrations of PA or E-64, A. lucorum larval development time was prolonged and adult weight and fecundity were decreased, suggesting that the dietary exposure assay was useful for detecting the toxicity of insecticidal compounds to A. lucorum. This assay was then used to assess the toxicity of Cry1Ab, Cry1Ac, Cry1F, Cry2Aa, and Cry2Ab proteins, which have been transformed into several crops, against A. lucorum. The results showed that A. lucorum did not show a negative effect by feeding on an artificial diet containing any of the purified Cry proteins. No significant changes in the activities of digestive, detoxifying, or antioxidant enzymes were detected in A. lucorum that fed on a diet containing Cry proteins, but A. lucorum fitness was reduced when the insect fed on a diet containing E-64 or PA. These results demonstrate that A. lucorum is not sensitive to the tested Cry proteins and that the dietary exposure assay is useful for evaluating the toxicity of insecticidal compounds to this species.
Показать больше [+] Меньше [-]Acute toxicity, bioconcentration, elimination and antioxidant effects of fluralaner in zebrafish, Danio rerio
2018
Jia, Zhong-Qiang | Liu, Di | Sheng, Cheng-Wang | Casida, John E. | Wang, Chen | Song, Ping-Ping | Chen, Yu-Ming | Han, Zhao-Jun | Zhao, Chun-Qing
Fluralaner is a novel isoxazoline insecticide which shows high insecticidal activity against parasitic, sanitary and agricultural pests, but there is little information about the effect of fluralaner on non-target organisms. This study reports the acute toxicity, bioconcentration, elimination and antioxidant response of fluralaner in zebrafish. All LC50 values of fluralaner to zebrafish were higher than 10 mg L⁻¹ at 24, 48, 72 and 96 h. To study the bioconcentration and elimination, the zebrafish were exposed to sub-lethal concentrations of fluralaner (2.00 and 0.20 mg L⁻¹) for 15 d and then held 6 d in clean water. The results showed medium BCF of fluralaner with values of 12.06 (48 h) and 21.34 (144 h) after exposure to 2.00 and 0.20 mg L⁻¹ fluralaner, respectively. In the elimination process, a concentration of only 0.113 mg kg⁻¹ was found in zebrafish on the 6th day after removal to clean water. After exposure in 2.00 mg L⁻¹ fluralaner, the enzyme activities of SOD, CAT, and GST, GSH-PX, CarE and content of MDA were measured. Only CAT and CarE activities were significantly regulated and the others stayed at a stable level compared to the control group. Meanwhile, transcriptional expression of CYP1C2, CYP1D1, CYP11A were significantly down-regulated at 12 h exposed to 2.00 mg L⁻¹ of fluralaner. Except CYP1D1, others CYPs were up-regulated at different time during exposure periods.Fluralaner and its formulated product (BRAVECTO®) are of low toxicity to zebrafish and are rapidly concentrated in zebrafish and eliminated after exposure in clean water. Antioxidant defense and metabolic systems were involved in the fluralaner-induced toxicity. Among them, the activities of CAT and CarE, and most mRNA expression level of CYPs showed fast response to the sub-lethal concentration of fluralaner, which could be used as a biomarker relevant to the toxicity.
Показать больше [+] Меньше [-]Combined effects of the pesticide spinetoram and the cyanobacterium Microcystis on the water flea Daphnia pulex
2022
Shen, Qiutong | Zhan, Yihe | Jia, Xuanhe | Li, Bangping | Zhu, Xuexia | Gao, Tianheng
Spinetoram is one of the most worldwidely used pesticides for its high insecticidal efficacy and low human toxicity. Following the large usage of spinetoram, the ecotoxicity and environmental risks to aquatic ecosystems have call for urgent study. In the present study, we investigated the combined effects of spinetoram and the harmful alga Microcystis aeruginosa in freshwater, on survival and reproduction of Daphnia pulex. Acute toxicity test of spinetoram resulted in negative effects on survival, with a 48-h LC₅₀ value of 37.71 μg L⁻¹. Under the long-time exposure to environmentally relevant concentrations (0.18 and 0.35 μg L⁻¹) of spinetoram and a low composition of Microcystis (30%) in the diet, D. pulex showed both shorter longevity and lower fecundity; the time to first brood also increased. At population level, carrying capacity was highly decreased by spinetoram and Microcystis, whereas a significant decrease of intrinsic growth rate was observed at 0.35 μg L⁻¹ spinetoram with 30% Microcystis as food. The present study highlighted that pesticide spinetoram had highly toxic effects on D. pulex and could reduce the tolerance of D. pulex to M. aeruginosa, causing great effects on D. pulex population in natural waterbodies.
Показать больше [+] Меньше [-]Efficacy of polydimethylsiloxane against Culex pipiens (Diptera: Culicidae)
2021
Nikolaidou, Anastasia J. | Ioannou, Charalampos S. | Papadopoulos, Nikos T. | Athanassiou, Christos G.
We evaluated, under controlled laboratory conditions, the insecticidal activity of polydimethylsiloxane (PDMS) for the control of the house mosquito, Culex pipiens. In a first series of bioassays, we tested the residual effect of different PDMS doses to control 3rd instar larvae. The label dose caused high mortality rates (>80%) even after 50 days from the initial application. Mortality levels at half the label dose were significantly higher compared to control, during the entire experimental period following a gradual decrease over time. Similar trends were observed when the 1/4 and the 1/8 of the label dose were applied with a much steeper decrease at long time intervals since the initial application especially for the lowest dose. However, after the 10th day of the bioassays and until the end of the experiments, mortality rates in the case of the label dose were higher compared to all other doses after the initial 10 days post application. Conversely, the insecticidal efficacy of PDMS against pupae was generally lower in comparison with larvae. Indeed, 10 days after the application, mortality was notably reduced, regardless of the dose rate tested. In a second series of bioassays, we assessed the efficacy of short exposures of different instars of larvae and nymphs to registered formulation and label dose. Mortality was well over 95% for 2nd instar larvae at exposure intervals ranging from 1 to 4 days. Significant mortality was recorded to 3rd instar larvae even at 15 min of exposure. Exposures longer than 30 min caused high mortality rates to 3rd instar larvae. Similar results were also recorded in pupae. Finally, in a third series of bioassays, the efficacy of PDMS in egg hatch was tested. Egg hatch was completely suppressed in the treated substrate (all egg rafts were “sinking” at the bottom of the test cups). Moreover, there was no oviposition in the case of the application of the label dose, while some egg rafts were recorded at one-eighth of the label dose. In both cases, it was recorded that PDMS acts as an oviposition deterrent. Τhe results of this study show that PDMS is effective in a wide range of conditions and application scenarios.
Показать больше [+] Меньше [-]Piper capitarianum essential oil: a promising insecticidal agent for the management of Aedes aegypti and Aedes albopictus
2021
França, Leandro P. | Amaral, Ana Claudia F. | Ramos, Aline de S. | Ferreira, José Luiz P. | Maria, Ana Clara B. | Oliveira, Kelson Mota T. | Araujo, Earle S. Jr | Branches, Adjane Dalvana S. | Silva, Jonathas N. | Silva, Noam G. | Barros, Gabriel de A. | Chaves, Francisco Célio M. | Tadei, Wanderli P. | Silva, Jefferson Rocha de A.
Mosquitoes are responsible for serious public health problems worldwide, and as such, Aedes aegypti and Aedes albopictus are important vectors in the transmission of dengue, chikungunya, and Zika in Brazil and other countries of the world. Due to growing resistance to chemical insecticides among populations of vectors, environmentally friendly strategies for vector management are receiving ever more attention. Essential oils (EOs) extracted from plants have activities against insects with multiple mechanisms of action. These mechanisms hinder the development of resistance, and have the advantages of being less toxicity and biodegradable. Thus, the present study aimed to evaluate the chemical composition of the EOs obtained from Piper capitarianum Yunck, as well as evaluating their insecticidal potential against Aedes aegypti and A. albopictus, and their toxicity in relation to Artemia salina. The yields of the EOs extracted from the leaves, stems, and inflorescences of P. capitarianum were 1.2%, 0.9%, and 0.6%, respectively, and their main constituents were trans-caryophyllene (20.0%), α-humulene (10.2%), β-myrcene (10.5%), α-selinene (7.2%), and linalool (6.0%). The EO from the inflorescences was the most active against A. aegypti and A. albopictus, and exhibited the respective larvicidal (LC₅₀ = 87.6 μg/mL and 76.1 μg/mL) and adulticide activities (LC₅₀ = 126.2 μg/mL and 124.5 μg/mL). This EO was also the most active in the inhibition of AChE, since it presented an IC₅₀ value of 14.2 μg/mL. Its larvicidal effect was observed under optical and scanning electron microscopy. Additionally, non-toxic effects against A. salina were observed. Docking modeling of trans-caryophyllene and α-humulene on sterol carrier protein-2 (SCP-2) suggests that both molecules have affinity with the active site of the enzyme, which indicates a possible mechanism of action. Therefore, the essential oil of P. capitarianum may be used in the development of new insecticide targets for the control of A. aegypti and A. albopictus in the Amazonian environment.
Показать больше [+] Меньше [-]Essential oils from three Algerian medicinal plants (Artemisia campestris, Pulicaria arabica, and Saccocalyx satureioides) as new botanical insecticides?
2020
Ammar, Sassoui | Noui, Hendel | Djamel, Sarri | Madani, Sarri | Maggi, Filippo | Bruno, Maurizio | Romano, Donato | Canale, Angelo | Pavela, Roman | Benelli, Giovanni
Medicinal and aromatic plants represent an outstanding source of green active ingredients for a broad range of real-world applications. In the present study, we investigated the insecticidal potential of the essential oils obtained from three medicinal and aromatic plants of economic importance in Algeria, Artemisia campestris, Pulicaria arabica, and Saccocalyx satureioides. Gas chromatography coupled with mass spectrometry (GC-MS) was used to study the essential oil chemical compositions. The three essential oils were tested against a mosquito vectoring filariasis and arboviruses, i.e., Culex quinquefasciatus, a fly pest acting also as pathogens vector, Musca domestica, and an agricultural moth pest, i.e., Spodoptera littoralis, using WHO and topical application methods, respectively. The essential oil from A. campestris, containing β-pinene (15.2%), α-pinene (11.2%), myrcene (10.3%), germacrene D (9.0%) (Z)-β-ocimene (8.1%) and γ-curcumene (6.4%), showed remarkable toxicity against C. quinquefasciatus (LC₅₀ of 45.8 mg L⁻¹) and moderate effects (LD₅₀ of 99.8 μg adult⁻¹) against M. domestica. Those from P. arabica and S. satureioides, containing epi-α-cadinol (23.9%), δ-cadinene (21.1%), α-cadinol (19.8%) and germacrene D-4-ol (8.4%), and thymol (25.6%), α-terpineol (24.6%), borneol (17.4%) and p-cymene (11.4%), respectively, were more active on S. littoralis showing LD₅₀ values of 68.9 and 61.2 μg larva⁻¹, respectively. Based on our results, the essential oil from A. campestris may be further considered a candidate ingredient for developing botanical larvicides.
Показать больше [+] Меньше [-]Behaviour and Growth of Chironomus riparius Meigen (Diptera: Chironomidae) under Imidacloprid Pulse and Constant Exposure Scenarios
2011
Azevedo-Pereira, Henrique M. V. S. | Lemos, Marco F. L. | Soares, Amadeu M. V. M.
Imidacloprid is a new insecticide that mimics nicotine, combining its insecticidal activity with a reduced persistence in the environment. The toxicity of imidacloprid to Chironomus riparius Meigen using the formulated product Confidor® from Bayer®, in pulse and continuous exposure, was evaluated in this study. The behavioural response of the midge after toxicant exposure using an online biomonitor was also investigated. Early second-instar C. riparius larvae were exposed in either constant (10Â days) or pulse (4Â days, followed by 6Â days post exposure in clean medium) conditions. Imidacloprid constant exposure resulted in a decrease in growth and impairment of the behavioural pattern of the midge larvae. Pulsed exposure followed by a recovery period revealed a recovery of midge physiological conditions, by reaching a stabilisation of normal behavioural activities and growth among treatments. Moreover, ventilation showed to be a more sensitive parameter by revealing a faster recovery than locomotion. Behaviour alterations may weaken the ability to escape from predators, and reduce food acquisition with consequent growth impairment. These effects may have an impact at the population and community level.
Показать больше [+] Меньше [-]Toxicity of the essential oil from Thymus serpyllum and thymol to larvae and pupae of the housefly Musca domestica L. (Diptera: Muscidae)
2020
Xie, Yongjian | Jin, Hui | Yang, Xi | Gu, Qilei | Zhang, Dayu
The essential oil (EO) of Thymus serpyllum and thymol were evaluated for their insecticidal activity against the housefly (Musca domestica) larvae and pupae. Contact toxicity and fumigation bioassays were used. Chemical composition analysis of T. serpyllum EO by gas chromatographic mass spectrometry (GC-MS) revealed that thymol (41.6%), p-cymene (21.9%), and γ-terpinene (19.2%) were the major components. For larval assays, the LC₅₀ value of T. serpyllum EO was 0.4 μl/cm² for contact toxicity and 20.9 μl/l for fumigation toxicity. For thymol, the contact toxicity LC₅₀ value was 0.035 μl/cm² and the fumigation LC₅₀ value was 2.0 μl/l. For the pupal assay, T. serpyllum EO had a percentage inhibition rate (PIR) value of 100% for both contact toxicity (1.0 μl/cm²) and fumigation toxicity assay (25 μl/l), whereas thymol had a PIR of 100% for contact toxicity (0.1 μl/cm²) and fumigation assay (5 μl/l). This study shows that T. serpyllum EO and thymol are toxic to housefly larvae and pupae and have the potential for use in the population control of this species.
Показать больше [+] Меньше [-]Essential oils and their bioactive compounds as eco-friendly novel green pesticides for management of storage insect pests: prospects and retrospects
2021
Chaudhari, Anand Kumar | Singh, Vipin Kumar | Kedia, Akash | Das, Somenath | Dubey, N. K.
The control of storage insect pests is largely based on synthetic pesticides. However, due to fast growing resistance in the targeted insects, negative impact on humans and non-target organisms as well as the environment, there is an urgent need to search some safer alternatives of these xenobiotics. Many essential oils (EOs) and their bioactive compounds have received particular attention for application as botanical pesticides, since they exhibited high insecticidal efficacy, diverse mode of action, and favourable safety profiles on mammalian system as well as to the non-target organisms. Data collected from scientific articles show that these EOs and their bioactive compounds exhibited insecticidal activity via fumigant, contact, repellent, antifeedant, ovicidal, oviposition deterrent and larvicidal activity, and by inhibiting/altering important neurotransmitters such as acetylcholine esterase (AChE) and octopamine or neurotransmitter inhibitor γ-amino butyric acid (GABA), as well as by altering the enzymatic [superoxide dismutase (SOD), catalase (CAT), peroxidases (POx), glutathione-S-transferase (GST) and glutathione reductase (GR)] and non-enzymatic [glutathione (GSH)] antioxidant defence systems. However, in spite of promising pesticidal efficacy against storage pests, the practical application of EOs and their bioactive compounds in real food systems remain rather limited because of their high volatility, poor water solubility and susceptibility towards degradation. Nanoencapsulation/nanoemulsion of EOs is currently considered as a promising tool that improved water solubility, enhanced bio-efficacy, stability and controlled release, thereby expanding their applicability.
Показать больше [+] Меньше [-]