Уточнить поиск
Результаты 1-10 из 112
Reciprocal interactions between anthropogenic stressors and insect microbiota
2022
Antonelli, Pierre | Duval, Pénélope | Luis, Patricia | Minard, Guillaume | Valiente Moro, Claire | Laboratoire d'Ecologie Microbienne - UMR 5557 (LEM) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Ecole Nationale Vétérinaire de Lyon (ENVL)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
International audience | Insects play many important roles in nature due to their diversity, ecological role, and impact on agriculture or human health. They are directly influenced by environmental changes and in particular anthropic activities that constitute an important driver of change in the environmental characteristics. Insects face numerous anthropogenic stressors and have evolved various detoxication mechanisms to survive and/or resist to these compounds. Recent studies highligted the pressure exerted by xenobiotics on insect life-cycle and the important role of insect-associated bacterial microbiota in the insect responses to environmental changes. Stressor exposure can have various impacts on the composition and structure of insect microbiota that in turn may influence insect biology. Moreover, bacterial communities associated with insects can be directly or indirectly involved in detoxification processes with the selection of certain microorganisms capable of degrading xenobiotics. Further studies are needed to assess the role of insect-associated microbiota as key contributor to the xenobiotic metabolism and thus as a driver for insect adaptation to polluted habitats.
Показать больше [+] Меньше [-]Comprehensive analyses of agrochemicals affecting aquatic ecosystems: A case study of Odonata communities and macrophytes in Saga Plain, northern Kyushu, Japan
2022
Tazunoki, Yuhei | Tokuda, Makoto | Sakuma, Ayumi | Nishimuta, Kou | Oba, Yutaro | Kadokami, Kiwao | Miyawaki, Takashi | Ikegami, Makihiko | Ueno, Daisuke
The negative influence of agrochemicals (pesticides: insecticide, fungicide, and herbicide) on biodiversity is a major ecological concern. In recent decades, many insect species are reported to have rapidly declined worldwide, and pesticides, including neonicotinoids and fipronil, are suspected to be partially responsible. In Japan, application of systemic insecticides to nursery boxes in rice paddies is considered to have caused rapid declines in Sympetrum (Odonata: Libellulidae) and other dragonfly and damselfly populations since the 1990s. In addition to the direct lethal effects of pesticides, agrochemicals indirectly affect Odonata populations through reductions in macrophytes, which provide a habitat, and prey organisms. Due to technical restrictions, most previous studies first selected target chemicals and then analyzed their influence on focal organisms at various levels, from the laboratory to the field. However, in natural and agricultural environments, various chemicals co-occur and can act synergistically. Under such circumstances, targeted analyses might lead to spurious correlations between a target chemical and the abundance of organisms. To address such problems, in this study we adopted a novel technique, “Comprehensive Target Analysis with an Automated Identification and Quantification System (CTA-AIQS)” to detect wide range of agrochemicals in water environment. The relationships between a wide range of pesticides and lentic Odonata communities were surveyed in agricultural and non-agricultural areas in Saga Plain, Kyushu, Japan. We detected significant negative relationships between several insecticides, i.e., acephate, clothianidin, dinotefuran, flubendiamide, pymetrozine, and thiametoxam (marginal for benthic odonates) and the abundance of lentic Epiprocta and benthic Odonates. In contrast, the herbicides we detected were not significantly related to the abundance of aquatic macrophytes, suggesting a lower impact of herbicides on aquatic vegetation at the field level. These results highlight the need for further assessments of the influence of non-neonicotinoid insecticides on aquatic organisms.
Показать больше [+] Меньше [-]Shedding light on toxicity of SARS-CoV-2 peptides in aquatic biota: A study involving neotropical mosquito larvae (Diptera: Culicidae)
2021
Mendonça-Gomes, Juliana Moreira | Charlie-Silva, Ives | Guimarães, Abraão Tiago Batista | Estrela, Fernanda Neves | Calmon, Marilia Freitas | Miceli, Rafael Nava | Sanches, Paulo R.S. | Bittar, Cíntia | Rahal, Paula | Cilli, Eduardo M. | Ahmed, Mohamed Ahmed Ibrahim | Vogel, Christoph F.A. | Malafaia, Guilherme
Knowledge about how the COVID-19 pandemic can affect aquatic wildlife is still extremely limited, and no effect of SARS-CoV-2 or its structural constituents on invertebrate models has been reported so far. Thus, we investigated the presence of the 2019-new coronavirus in different urban wastewater samples and, later, evaluated the behavioral and biochemical effects of the exposure of Culex quinquefasciatus larvae to two SARS-CoV-2 spike protein peptides (PSPD-2002 and PSPD-2003) synthesized in our laboratory. Initially, our results show the contamination of wastewater by the new coronavirus, via RT-qPCR on the viral N1 gene. On the other hand, our study shows that short-term exposure (48 h) to a low concentration (40 μg/L) of the synthesized peptides induced changes in the locomotor and the olfactory-driven behavior of the C. quinquefascitus larvae, which were associated with increased production of ROS and AChE activity (cholinesterase effect). To our knowledge, this is the first study that reports the indirect effects of the COVID-19 pandemic on the larval phase of a freshwater invertebrate species. The results raise concerns at the ecological level where the observed biological effects may lead to drastic consequences.
Показать больше [+] Меньше [-]Black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae), and house fly, Musca domestica L. (Diptera: Muscidae), larvae reduce livestock manure and possibly associated nutrients: An assessment at two scales
2021
Miranda, Chelsea D. | Crippen, Tawni L. | Cammack, Jonathan A. | Tomberlin, Jeffery K.
The industrial production of insects for waste management or as a protein source is becoming vital to our society. Large volumes of manure are produced by concentrated animal facilities around the globe that must be managed, utilized, and disposed of properly. Flies offer a partial solution with their abilities to reduce these wastes and heavy metal pollutants. Meat and crop proteins are being supplemented by insect proteins for many feeds across the globe, yet science-based studies behind the mass-rearing of insects are still in their infancy. In the current study, the percent change in the composition of nutrients, heavy metals, and fiber, in dairy, poultry, and swine manure degraded by either black soldier fly (BSF) or house fly (HF) larvae was explored. Pre-digested and post-digested manure samples were collected from four independent studies that differed in production scale (number of larvae and feeding regimen): 1) BSF small-scale (100 larvae fed incrementally), 2) HF small-scale (100 larvae fed incrementally), 3) BSF large-scale (10,000 larvae fed a single time), and 4) HF large-scale (4,000 larvae fed a single time). Results indicate that nitrogen is a key nutrient impacted by larval digestion of manure by both species, regardless of scale. However, scale significantly impacted reductions of other nutrients, as did the type of manure in which the insects were reared. Ultimately, this study demonstrated that manure type and rearing scale impact the ability of BSF and HF larvae to reduce nutrients and heavy metals in manure, and thus insect management procedures need to be congruent with production emphases of the insects for waste management or protein products. Failure to take scale into consideration could lead to inaccurate assumptions related to industrialized efforts on this topic.
Показать больше [+] Меньше [-]The direct and indirect effects of copper on vector-borne disease dynamics
2021
Neff, Erik | Dharmarajan, Guha
Metal pollution is a growing concern that affects the health of humans and animals globally. Copper is an essential insect micronutrient required for respiration, pigmentation and oxidative stress protection but can also act as a potentially toxic trace element. While several studies have focused on the negative fitness effects of copper on the aquatic larvae of mosquitoes, the effects of larval copper exposure on adult mosquito fitness (i.e., survival and fecundity) and their ability to transmit parasites (i.e., vector competence) remains unclear. Here, using a well-studied model vector-parasite system, the mosquito Aedes aegypti and parasite Dirofilaria immitis, we show that sublethal copper exposure in larval mosquitoes alters adult female fecundity and vector competence. Specifically, mosquitoes exposed to copper had a hormetic fecundity response and mosquitoes exposed to 600 μg/L of copper had significantly fewer infective parasite larvae than control mosquitoes not exposed to copper. Thus, exposure of mosquito larvae to copper levels far below EPA-mandated safe drinking water limits (1300 μg/L) can impact vector-borne disease dynamics not only by reducing mosquito abundance (through increased larval mortality), but also by reducing parasite transmission risk. Our results also demonstrated that larval copper is retained through metamorphosis to adulthood in mosquitoes, indicating that these insects could transfer copper from aquatic to terrestrial foodwebs, especially in urban areas where they are abundant. To our knowledge this is the first study to directly link metal exposure with vector competence (i.e., ability to transmit parasites) in any vector-parasite system. Additionally, it also demonstrates unequivocally that mosquitoes can transfer contaminants from aquatic to terrestrial ecosystems. These results have broad implications for public health because they directly linking contaminants and vector-borne disease dynamics, as well as linking mosquitoes and contaminant dynamics.
Показать больше [+] Меньше [-]Surface oil is the primary driver of macroinvertebrate impacts following spills of diluted bitumen in freshwater
2021
Black, T.A. | White, M.S. | Blais, J.M. | Hollebone, B. | Orihel, D.M. | Palace, V.P. | Rodriguez-Gil, J.L. | Hanson, M.L.
The response of freshwater invertebrates following accidental releases of oil is not well understood. This knowledge gap is more substantial for unconventional oils such as diluted bitumen (dilbit). We evaluated the effects of dilbit on insect emergence and benthic invertebrates by conducting experimental spills in limnocorrals (10-m diameter; ~100-m³) deployed in a boreal lake at the IISD-Experimental Lakes Area, Canada. The study included seven dilbit treatments (spill volumes ranged from 1.5 L [1:66,000, oil:water, v/v] to 180 L [1:590, oil:water, v/v]), two controls, and additional lake reference sites, monitored for 11 weeks. Invertebrate emergence declined at the community level following oil addition in a significantly volume-dependent manner, and by 93–100 % over the 11 weeks following the spill in the highest treatment. Dilbit altered community structure of benthic invertebrates, but not abundance. One-year post-spill and following oil removal using traditional skimming and absorption techniques, benthic richness and abundance were greater among all treatments than the previous year. These results indicate that recovery in community composition is possible following oil removal from a lake ecosystem. Research is needed concerning the mechanisms by which surface oil directly affect adult invertebrates, whether through limiting oviposition, limiting emergence, or both. The response of benthic communities to sediment tar mats is also warranted.
Показать больше [+] Меньше [-]Artificial light reduces foraging opportunities in wild least horseshoe bats
2021
Luo, Bo | Xu, Rong | Li, Yunchun | Zhou, Wenyu | Wang, Weiwei | Gao, Huimin | Wang, Zhen | Deng, Yingchun | Liu, Ying | Feng, Jiang
Artificial light at night has been proposed as a global threat to biodiversity. Insectivorous bats are strictly nocturnal animals that are vulnerable to disruption from artificial light. Given that many light-sensitive bats tend to avoid night light during roost departure, it is often assumed that nighttime light pollution reduces their foraging opportunities, albeit empirical evidence in support of this hypothesis remains elusive. Here, we used least horseshoe bats, Rhinolophus pusillus, to assess whether white artificial light is detrimental for the opportunities of foraging. We manipulated the levels of ambient illumination and perceived predation risk inside the bat roost. We monitored bats' emergence activity using high-speed video and audio recording systems. DNA-based faecal dietary analysis and insect survey were applied to determine activity time of prey in foraging areas. Following experimentally manipulation of white light-emitting diode (LED) lighting 0–15 min after sunset, bat pass, flight duration, and echolocation pulse emission decreased. The mean emergence time of bats flying out was delayed by 14 min under lit treatment compared with the dark control. Only 10% of bats left for foraging during 40 min of light exposure. Aversive effects of LED light on bat emergence were robust regardless of the presence of a potential predator. Insect prey reached a peak of abundance between 30 and 60 min after sunset. These results demonstrate that white artificial light hinders evening emergence behavior in least horseshoe bats, leading to a mismatch between foraging onset and peak food availability. Our findings highlight that light pollution overrides foraging onset, suggesting the importance of improving artificial lighting scheme near the roosts of light-sensitive bats.
Показать больше [+] Меньше [-]Accumulation of trace metals in freshwater macroinvertebrates across metal contamination gradients
2021
Arnold, Amanda | Murphy, John F. | Pretty, James L. | Duerdoth, Charles P. | Smith, Brian D. | Rainbow, P. S. | Spencer, Kate L. | Collins, Adrian L. | Jones, J Iwan
Historical mining activities cause widespread, long-term trace metal contamination of freshwater ecosystems. However, measuring trace metal bioavailability has proven difficult, because it depends on many factors, not least concentrations in water, sediment and habitat. Simple tools are needed to assess bioavailabilities. The use of biomonitors has been widely advocated to provide a realistic measure. To date there have been few attempts to identify ubiquitous patterns of trace metal accumulation within and between freshwater biomonitors at geographical scales relevant to trace metal contamination. Here we address this through a nationwide collection of freshwater biomonitors (species of Gammarus, Leuctra, Baetis, Rhyacophila, Hydropsyche) from 99 English and Welsh stream sites spanning a gradient of high to low trace metal loading. The study tested for inter-biomonitor variation in trace metal body burden, and for congruence amongst accumulations of trace metals within taxa and between taxa across the gradient. In general, significant differences in trace metal body burden occurred between taxa: Gammarus sp. was the most different compared with insect biomonitors. Bivariate relationships between trace metals within biomonitors reflected trace metal profiles in the environment. Strong correlations between some trace metals suggested accumulation was also influenced by physiological pathways. Bivariate relationships between insect biomonitors for body burdens of As, Cu, Mn and Pb were highly consistent. Our data show that irrespective of taxonomic or ecological differences, there is a commonality of response amongst insect taxa, indicating one or more could provide consistent measures of trace metal bioavailability.
Показать больше [+] Меньше [-]Hazardous impact of diclofenac exposure on the behavior and antioxidant defense system in Nauphoeta cinerea
2020
Adedara, Isaac A. | Awogbindin, Ifeoluwa O. | Afolabi, Blessing A. | Ajayi, Babajide O. | Rocha, Joao B.T. | Farombi, Ebenezer O.
Environmental pollution by pharmaceuticals such as diclofenac (DCF) is globally acknowledged to be a threat to the ecosystems. Nauphoeta cinerea is an important insect with valuable ecological role. The present investigation aimed to elucidate the impact of DCF on insects by assessing the behavior and antioxidant defense response in nymphs of N. cinerea exposed to DCF-contaminated food at 0, 0.5, 1.0 and 2.0 μg kg⁻¹ feed for 42 successive days. Subsequent to exposure period, neurobehavioral analysis using video-tracking software in a novel apparatus was performed before estimation of biochemical endpoints in the head, midgut and hemolymph of the insects. Results indicated that DCF-exposed insects exhibited marked reduction in the maximum speed, total distance traveled, mobile episodes, total mobile time, body rotation, absolute turn angle and path efficiency, whereas the total freezing time was increased compared with the control. The diminution in the exploratory activities of DCF-exposed insects was substantiated by heat maps and track plots. Additionally, DCF elicited marked diminution in antioxidant enzyme and acetylcholinesterase (AChE) activities along with increase in nitric oxide (NO), reactive oxygen and nitrogen species (RONS), and lipid peroxidation (LPO) levels in the head, midgut and hemolymph of the insects. Taken together, DCF elicited neurotoxicity and oxido-inflammatory stress in exposed insects. N. cinerea may be a suitable model insect for environmental risk assessment of pharmaceuticals in non-target insect species.
Показать больше [+] Меньше [-]Chronic health risk comparison between China and Denmark on dietary exposure to chlorpyrifos
2020
Sang, Chenhui | Sørensen, Peter Borgen | An, Wei | Andersen, Jens Hinge | Yang, Min
Chlorpyrifos is one of the most heavily used pesticides in domestic and agricultural insect prevention globally. Given the potential neurotoxicity of chlorpyrifos and its high detection rates in food and drinking water, health risks attributable to chlorpyrifos residue in Chinese drinking water and food in both China and Denmark were assessed in this study. Mixed left-censored handling models were used to deal with the non-detected values in chlorpyrifos concentrations. Results show that chronic exposure imputed to chlorpyrifos residue is much lower than the reference dose, and will thus not pose appreciable health risk to the consumer. Compared to the total exposure from chlorpyrifos in drinking water and food sources, chronic exposure from drinking water sources in China accounts for 0–4.4%. Health risk owing to chlorpyrifos in food within China is 6-7-fold higher than in Denmark, and this coincides with the fact that all application of chlorpyrifos is banned in Denmark, in contrast to China. However, the Danish consumers are still exposed from imported food items. The main health risk contributors in China are the food groups of Grains and grain-based products and Vegetable and vegetable products, while the main chronic health risk contributor in Denmark is the food group of imported fruit and fruit products.
Показать больше [+] Меньше [-]