Уточнить поиск
Результаты 1-10 из 99
Melanoidin Removal and Electricity Generation of Palm Oil Mill Effluent by Oxidoreductase Producing Consortium with Air-Cathode Microbial Fuel Cell
2022
Chaijak, Pimprapa | Thipraksa, Junjira | Michu, Panisa
Melanoidin is the hazardous dark brown byproduct generated during palm oil extraction in the crude palm oil industry. In this study, the laccase-producing consortium W3 (Bacillus licheniformis and Bacillus subtilis) was used to degrade melanoidin and decolorize palm oil mill effluent (POME). The microbial fuel cell (MFC) has been applied for enhancing decolorization and generation of electrical energy as a byproduct. The results displayed the maximal melanoidin removal of 95.20±0.10% was gained when the consortium W3 was added into the synthetic wastewater. While the maximal decolorization of 75.10±0.12% and 73.91±0.23% were gained from the sterile POME and raw POME respectively without chemical addition. Moreover, the power output of 2.13±0.05 W/m3 or 0.27±0.01 W/m2 was achieved from the POME-fed MFC with W3. This study gained new knowledge of using the laccase-producing bacterial consortium integrated with MFC for melanoidin removal from the POME and generation of electrical power as an alternative energy source.
Показать больше [+] Меньше [-]Power Recovery and Sulfate Removal from Rubber Wastewater with the Novel Model Multi-Electrode Microbial Fuel Cell
2021
Chaijak, Pimprapa | Sato, Chikashi
Microbial fuel cell (MFC) is a well-known technology that can convert contaminated substrate in the wastewater to electrical power. To gain more power output, the multi-electrode MFC was developed owing to it has a high surface area for anaerobic microbe adhesion. Here we show the multi-anode was made from the bamboo charcoal was combined with laccase-based cathode in the ceramic separator MFC for the rubber wastewater treatment and enhancing the power generation. The untreated rubber wastewater with initial COD and contaminated sulfate concentration of 3,500 mg/L and 1,100 mg/L was used as a anolyte. The 843.33±5.77 mA/m3 of CD, the 711.23±9.76 mW/m3 of PD were generated. Moreover, this system reached 83.07±3.01% of sulfate removal when it was operated at 30 °C for 12 hr. This study recommended that multi-anode with laccase based MFC can more successfully produce energy from untreated rubber wastewater. it will be greater in terms of electricity generation and sulfate removal.
Показать больше [+] Меньше [-]Laccase production by Pleurotus ostreatus using cassava waste and its application in remediation of phenolic and polycyclic aromatic hydrocarbon-contaminated lignocellulosic biorefinery wastewater
2022
Kumar, Vaidyanathan Vinoth | Venkataraman, Swethaa | Kumar, P Senthil | George, Jenet | Rajendran, Devi Sri | Shaji, Anna | Lawrence, Nicole | Saikia, Kongkona | Rathankumar, Abiram Karanam
The treatment of contaminants from lignocellulosic biorefinery effluent has recently been identified as a unique challenge. This study focuses on removing phenolic contaminants and polycyclic aromatic hydrocarbons (PAHs) from lignocellulosic biorefinery wastewater (BRW) applying a laccase-assisted approach. Cassava waste was used as a substrate to produce the maximum yield of laccase enzyme (3.9 U/g) from Pleurotus ostreatus. Among the different inducers supplemented, CuSO₄ (0.5 mM) showed an eight-fold increase in enzyme production (30.8 U/g) after 240 h of incubation. The catalytic efficiency of laccase was observed as 128.7 ± 8.47 S⁻¹mM⁻¹ for syringaldazine oxidation at optimum pH 4.0 and 40 °C. Laccase activity was completely inhibited by lead (II) ion, mercury (II) ion, sodium dodecyl sulphate, sodium azide and 1,4 dithiothretiol and induced significantly by manganese (II) ion and rhamnolipid. After treating BRW with laccase, the concentrations of PAHs and phenolic contaminants of 1144 μg/L and 46160 μg/L were reduced to 96 μg/L and 16100 μg/L, respectively. The ability of laccase to effectively degrade PAHs in the presence of different phenolic compounds implies that phenolic contaminants may play a role in PAHs degradation. After 240 h, organic contaminants were removed from BRW in the following order: phenol >2,4-dinitrophenol > 2-methyl-4,6-dinitrophenol > 2,3,4,6-tetrachlorophenol > acenaphthene > fluorine > phenanthrene > fluoranthene > pyrene > anthracene > chrysene > naphthalene > benzo(a)anthracene > benzo(a)pyrene > benzo(b)fluoranthene > pentachlorophenol > indeno(1,2,3-cd)pyrene > benzo(j) fluoranthene > benzo[k]fluoranthène. The multiple contaminant remediation from the BRW by enzymatic method, clearly suggests that the laccase can be used as a bioremediation tool for the treatment of wastewater from various industries.
Показать больше [+] Меньше [-]Application of laccase immobilized rice straw biochar for anthracene degradation
2021
Imam, Arfin | Suman, Sunil Kumar | Singh, Raghuvir | Vempatapu, Bhanu Prasad | Ray, Anjan | Kanaujia, Pankaj K.
The present study explores the immobilization of ligninolytic enzyme-laccase on the surface of rice straw biochar and evaluates its application for anthracene biodegradation. The rice straw biochar was acid-treated to generate carboxyl functionality on its surface, followed by detailed morphological and chemical characterization. The surface area of functionalized biochar displayed a two-fold increase compared to the untreated biochar. Laccase was immobilized on functionalized biochar, and an immobilization yield of 66% was obtained. The immobilized enzyme demonstrated operational stability up to six cycles while retaining 40% of the initial activity. Laccase immobilization was further investigated by performing adsorption and kinetic studies, which revealed the highest immobilization concentration of 500 U g⁻¹ at 25 °C. The adsorption followed the Langmuir isotherm model at equilibrium, and the kinetic study confirmed pseudo-second-order kinetics. The equilibrium rate constant (K₂) at 25 °C and 4 °C were 3.6 × 10⁻³ g U⁻¹ min⁻¹ and 4 × 10⁻³ g U⁻¹ min⁻¹ respectively for 100 U g⁻¹ of enzyme loading. This immobilized system was applied for anthracene degradation in the aqueous batch mode, which resulted in complete degradation of 50 mg L⁻¹ anthracene within 24 h of interaction exposure.
Показать больше [+] Меньше [-]Acute effects of PAH contamination on microbial community of different forest soils
2020
Picariello, Enrica | Baldantoni, Daniela | De Nicola, Flavia
Polycyclic aromatic hydrocarbons (PAHs) are hazardous organic compounds with mutagenic, genotoxic and carcinogenic properties. Although PAHs in soil can cause toxicity to microorganisms, the microbial community is able to degrade these compounds. For this reason, it is important to study acute and short-term effects of PAH contamination on soil microbial community, also to shed light on its possible exploitation in soil restoration.The effects of acute PAH contamination on the structure and metabolic activity of microbial communities in three forest (beech, holm oak, black pine) soils were studied. The soils were spiked with phenanthrene, pyrene or benzo[a]pyrene and incubated in experimental mesocosms, under controlled conditions. Enzymatic activities (laccase, total peroxidase and hydrolase), as well as microbial biomass and community structure (through phospholipid fatty acid and ergosterol analyses), were evaluated in the three soil systems 4 days after contamination and compared to no-spiked soils. In soil under holm oak, there was a stimulation of Gram+ bacteria after contamination with all the 3 PAHs, whereas in soil under pine, pyrene and phenanthrene additions mainly stimulated fungi and actinomycetes.
Показать больше [+] Меньше [-]Detoxification of aflatoxin B1 by Stenotrophomonas sp. CW117 and characterization the thermophilic degradation process
2020
Cai, Mengyu | Qian, Yingying | Chen, Nan | Ling, Tiejun | Wang, Jingjing | Jiang, Hong | Wang, Xu | Qi, Kezong | Zhou, Yu
Mycotoxins are high toxic, widely distributed contaminants in foodstuff. In this study, a aflatoxin B1 (AFB1) degrading strain S. acidoaminiphila CW117 was screened, and its detoxification characteristics were investigated. Substrate AFB1 at 45 μg/L was degraded by CW117 within 24 h; meanwhile, 4.1 mg/L AFB1 was almost degraded within 48 h. After 24 h degradation, the biotoxicity of the detoxified culture was eliminated. Strain CW117 efficient degradation to AFB1 (especially to low AFB1 concentrations) suggested its potential significance to detoxification development on food and feedstuff. The active degradation components present in the cell-free supernatant. The degradation ratio increased constantly with increasing incubation temperature raised (0–90 °C) and was even stable at 90 °C. Degradation was optimal at pH 6–7, and was only partially inhibited by metal-chelators (EDTA and EGTA), proteinase K, and a protein denaturant (sodium dodecyl sulfate, SDS). The recombinant laccase rLC1 (0.5 mg/mL) from CW117 degraded 29.3% of AFB1 within 24 h; however, the cell-free supernatant degraded 76.7% of the toxin in same time, with much lower protein content. The results indicated the CW117 degrades AFB1 via a combination of enzymes and micro-molecule oxides.
Показать больше [+] Меньше [-]The transformation of triclosan by laccase: Effect of humic acid on the reaction kinetics, products and pathway
2018
Dou, Rong-Ni | Wang, Jing-Hao | Chen, Yuan-Cai | Hu, Yong-You
This study systematically explored the effect of humic acid (HA) (as model of natural organic matter) on the kinetics, products and transformation pathway of triclosan (TCS) by laccase-catalyzed oxidation. It was found that TCS could be effectively transformed by laccase-catalysis, with the apparent second-order rate constant being 0.056 U⁻¹ mL min⁻¹. HA inhibited the removal rate of TCS. HA-induced inhibition was negatively correlated with HA concentration in the range of 0–10 mg L⁻¹ and pH-dependent from 3.5 to 9.5. FT-IR and ¹³C NMR spectra showed a decrease of aromatic hydroxyl (phenolic) groups and an increase of aromatic ether groups, indicating the cross-linking of HA via C-O-C and C-N-C bonds during enzyme-catalyzed oxidation. Ten principle oxidative products, including two quinone-like products (2-chlorohydroquinone, 2-chloro-5-(2,4-dichlodichlorophenoxy)-(1,4)benzoquinone), one chlorinated phenol (2,4-dichlorophenol (2,4-DCP)), three dimers, two trimmers and two tetramers, were detected by gas chromatograghy/mass spectrometry (GC-MS) and high performance liquid chromatography/quadrupole time-of-flight/mass spectrometry (HPLC/Q-TOF/MS). The presence of HA induced significantly lesser generation of self-polymers and enhanced cross-coupling between HA and self-polymers via C-O-C, C-N-C and C-C coupling pathways. A plausible transformation pathway was proposed as follows: TCS was initially oxidized to form reactive phenoxyl radicals, which self-coupled to each other subsequently by C-C and C-O pathway, yielding self-polymers. In addition, the scission of ether bond was also observed. The presence of HA can promote scission of ether bond and further oxidation of phenoxyl radicals, forming hydroxylated or quinone-like TCS. This study shed light on the behavior of TCS in natural environment and engineered processes, as well provided a perspective for the water/wastewater treatment using enzyme-catalyzed oxidation techniques.
Показать больше [+] Меньше [-]Oxidation of benzo[a]pyrene by laccase in soil enhances bound residue formation and reduces disturbance to soil bacterial community composition
2018
Zeng, Jun | Zhu, Qinghe | Wu, Yucheng | Shan, Jun | Ji, Rong | Lin, Xiangui
Laccases are capable of rapidly oxidizing benzo[a]pyrene. It is thought that the metabolites with an increase in water solubility caused by the oxidation of benzo[a]pyrene may stimulate the subsequent mineralization. However, to date, there has been no experimental evidence to support this. In this study, the fate of benzo[a]pyrene in soil affected by laccase amendment and the resulting soil bacterial responses were investigated. Laccase amendment promoted benzo[a]pyrene dissipation (15.6%) from soil, accompanied by trace mineralization (<0.58 ± 0.02%) and substantial bound residue formation (∼80%). An increase of ∼15% in the bound residue fraction was observed by laccase amendment, which mainly resulted from covalent binding of the residues to humin fraction. During the incubation, the abundance of bacterial 16S rRNA and polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase genes did not change markedly. In contrast, benzo[a]pyrene treated with laccase resulted in a smaller shift in the bacterial community composition, indicating a reduced disturbance to the soil microbial communities. These results here suggest that benzo[a]pyrene contaminated soil can be detoxified by laccase amendment mainly due to the enhanced bound residue formation to soil organic matter via covalent binding.
Показать больше [+] Меньше [-]Biofilm-mediated decolorization, degradation and detoxification of synthetic effluent by novel biofilm-producing bacteria isolated from textile dyeing effluent
2022
Haque, Md Manjurul | Haque, Md Amdadul | Mosharaf, Md Khaled | Islam, Md Shahidul | Islam, Md Mynul | Hasan, Mehedi | Molla, Abul Hossain | Haque, Md Ashraful
Biofilm-mediated bioremediation of xenobiotic pollutants is an environmental friendly biological technique. In this study, 36 out of 55 bacterial isolates developed biofilms in glass test tubes containing salt-optimized broth plus 2% glycerol (SOBG). Scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and Congo red- and Calcofluor binding results showed biofilm matrices contain proteins, curli, nanocellulose-rich polysaccharides, nucleic acids, lipids, and peptidoglycans. Several functional groups including –OH, N–H, C–H, CO, COO⁻, –NH₂, PO, C–O, and C–C were also predicted. By sequencing, ten novel biofilm-producing bacteria (BPB) were identified, including Exiguobacterium indicum ES31G, Kurthia gibsonii ES43G, Kluyvera cryocrescens ES45G, Cedecea lapagei ES48G, Enterobacter wuhouensis ES49G, Aeromonas caviae ES50G, Lysinibacillus sphaericus ES51G, Acinetobacter haemolyticus ES52G, Enterobacter soli ES53G, and Comamonas aquatica ES54G. The Direct Red (DR) 28 (a carcinogenic and mutagenic dye used in dyeing and biomedical processes) decolorization process was optimized in selected bacterial isolates. Under optimum conditions (SOBG medium, 75 mg L⁻¹ dye, pH 7, 28 °C, microaerophilic condition and within 72 h of incubation), five of the bacteria tested could decolorize 97.8% ± 0.56–99.7% ± 0.45 of DR 28 dye. Azoreductase and laccase enzymes responsible for biodegradation were produced under the optimum condition. UV–Vis spectral analysis revealed that the azo (−NN−) bond peak at 476 nm had almost disappeared in all of the decolorized samples. FTIR data revealed that the foremost characteristic peaks had either partly or entirely vanished or were malformed or stretched. The chemical oxygen demand decreased by 83.3–91.3% in the decolorized samples, while plant probiotic bacterial growth was indistinguishable in the biodegraded metabolites and the original dye. Furthermore, seed germination (%) was higher in the biodegraded metabolites than the parent dye. Thus, examined BPB could provide potential solutions for the bioremediation of industrial dyes in wastewater.
Показать больше [+] Меньше [-]Isolation of Trametes hirsuta La-7 with high laccase-productivity and its application in metabolism of 17β-estradiol
2020
Sun, Kai | Cheng, Xing | Yu, Jialin | Chen, Luojian | Wei, Jiajun | Chen, Wenjun | Wang, Jun | Li, Shunyao | Liu, Qingzhu | Si, Youbin
Estrogens, which are extensive in the eco-environments, are a category of high-toxic emerging contaminants that induce metabolic disorders and even carcinogenic risks in wildlife and humans. Here we investigate whether fungus-secreted laccase can be used as a green catalyst to eliminate a representative estrogen, 17β-estradiol (E2). A white-rot fungus Trametes hirsuta La-7 with high laccase-productivity, was isolated from pig manure-contaminated soil. Extracellular laccase activity expressed by strain La-7 was 65.4 U·mL⁻¹ for a 3 d inoculation under the optimal fermentation parameters. The concentrated-crude laccase from Trametes hirsuta La-7 (CC-ThLac) was capable of effectively metabolizing E2 at pH 4–6, and the apparent pseudo first-order reaction rate constant and half-life values were respectively 0.027–0.055 min⁻¹ and 25.86–12.67 min (R² > 0.98). The mass measurement of high-resolution mass spectrometry in combination with ¹³C-isotope labeling identified that the main by-products of E2 metabolism were dimers, trimers, and tetramers, which are consistent with radical-driven C–C and/or C–O–C covalent coupling pathway, involving the initial enzymatic production of phenoxy radical intermediates and then the successive oxidative-oligomerization of radical intermediates. The formation of oligomers dramatically reduced the estrogenic activity of E2. Additionally, CC-ThLac also exhibited high-efficiency metabolism capability toward E2 in the natural water and pig manure, with more than 94.4% and 91.0% of E2 having been metabolized, respectively. These findings provide a broad prospect for the clean biotechnological applications of Trametes hirsuta La-7 in estrogen-contaminated ecosystems.
Показать больше [+] Меньше [-]