Уточнить поиск
Результаты 1-10 из 108
Integrated assessment of the impact of land use types on soil pollution by potentially toxic elements and the associated ecological and human health risk
2022
Wang, Xueping | Wang, Lingqing | Zhang, Qian | Liang, Tao | Li, Jing | Bruun Hansen, Hans Chr | Shaheen, Sabry M. | Antoniadis, Vasileios | Bolan, Nanthi | Rinklebe, Jörg
The impact of land use type on the content of potentially toxic elements (PTEs) in the soils of the Qinghai-Tibet Plateau (QTP) and the associated ecological and human health risks has drawn great attention. Consequently, in this study, top- and subsurface soil samples were collected from areas with four different land uses (i.e., cropland, forest, grassland, and developed area) and the total contents of Cr, Cd, Cu, Pb and Zn were determined. Geostatistical analysis, self-organizing map (SOM), and positive matrix factorization (PMF), ecological risk assessment (ERA) and human health risk assessment (HRA) were applied and used to classify and identify the contamination sources and assess the potential risk. Partial least squares path modeling (PLS-PM) was applied to clarify the relationship of land use with PTE contents and risk. The PTE contents in all topsoil samples surpassed the respective background concentrations of China and corresponding subsurface concentrations. However, the ecological risk of all soil samples remained at a moderate or considerable level across the four land use types. Developed area and cropland showed a higher ecological risk than the other two land use types. Industrial discharges (32.8%), agricultural inputs (22.6%), natural sources (23.7%), and traffic emissions (20.9%) were the primary PTE sources in the tested soils, which indicate that anthropogenic activities have significantly affected soil PTE contents to a greater extent than other sources. Industrial discharge was the most prominent source of non-carcinogenic health risk, contributing 37.7% for adults and 35.2% for children of the total risk. The results of PLS-PM revealed that land use change associated with intensive human activities such as industrial activities and agricultural practices distinctly affected the PTE contents in soils of the Qinghai-Tibet Plateau.
Показать больше [+] Меньше [-]Increased health threats from land use change caused by anthropogenic activity in an endemic fluorosis and arsenicosis area
2020
Yuan, Li | Fei, Wang | Jia, Feng | Junping, Lv | Qi, Liu | Fangru, Nan | Xudong, Liu | Lan, Xu | Shulian, Xie
Urbanization is conducive to promoting social development and improving living standards. However, the changing land use attributed to urbanization has placed both the environment and humans at risk. Based on the long-term monitoring and the land use change during 2010–2017, we investigated the exposure of fluoride (F) and arsenic (As) in groundwater. We analyzed the temporal and spatial variation of F and As from different land use changes. The study assessed health risk for children by calculating carcinogenic risk and non-carcinogenic risk. Furthermore, we mapped the distribution pattern of F and As using GIS. For the 768 water samples collected from 2010 to 2017, F concentrations ranged between 0.10 and 5.70 mg L⁻¹ (M = 0.68 ± 0.02 mg L⁻¹), As concentrations ranged between 0.50 and 71.50 μg L⁻¹ (M = 4.28 ± 0.28 μg L⁻¹). A concerning result showed that 6.77% of F concentrations larger than 1.5 mg L⁻¹ and 11.46% of As concentrations larger than 10 μg L⁻¹ based on the recommendation by WHO, respectively. Results proved that land use change caused by human activity increased groundwater pollution and placed human health at risk. High F and As risk were found in southern Taiyuan City. In particular, the groundwater of industrial land suffered from more severe pollution, especially at the frontier of urban and suburban areas in the southern part of Taiyuan City. Land use change attributed to industrial land resulted in major increases in the F and As concentrations in groundwater across 2010–2017. Both carcinogenic risk and non-carcinogenic risk in 2016–2017 were higher than that in 2010–2015. Rational land use planning, strict groundwater protection policies and the regular monitoring of pollution levels are necessary in order to prevent the adverse health of residents.
Показать больше [+] Меньше [-]Impacts of urbanization on carbon balance in terrestrial ecosystems of the Southern United States
2012
Zhang, Chi | Tian, Hanqin | Chen, Guangsheng | Chappelka, Arthur | Xu, Xiaofeng | Ren, Wei | Hui, Dafeng | Liu, Mingliang | Lu, Chaoqun | Pan, Shufen | Lockaby, Graeme
Using a process-based Dynamic Land Ecosystem Model, we assessed carbon dynamics of urbanized/developed lands in the Southern United States during 1945–2007. The results indicated that approximately 1.72 (1.69–1.77) Pg (1P = 10¹⁵) carbon was stored in urban/developed lands, comparable to the storage of shrubland or cropland in the region. Urbanization resulted in a release of 0.21 Pg carbon to the atmosphere during 1945–2007. Pre-urbanization vegetation type and time since land conversion were two primary factors determining the extent of urbanization impacts on carbon dynamics. After a rapid decline of carbon storage during land conversion, an urban ecosystem gradually accumulates carbon and may compensate for the initial carbon loss in 70–100 years. The carbon sequestration rate of urban ecosystem diminishes with time, nearly disappearing in two centuries after land conversion. This study implied that it is important to take urbanization effect into account for assessing regional carbon balance.
Показать больше [+] Меньше [-]Developments in greenhouse gas emissions and net energy use in Danish agriculture – How to achieve substantial CO₂ reductions?
2011
Dalgaard, T. | Olesen, J.E. | Petersen, S.O. | Petersen, B.M. | Jørgensen, U. | Kristensen, T. | Hutchings, N.J. | Gyldenkærne, S. | Hermansen, J.E.
Greenhouse gas (GHG) emissions from agriculture are a significant contributor to total Danish emissions. Consequently, much effort is currently given to the exploration of potential strategies to reduce agricultural emissions. This paper presents results from a study estimating agricultural GHG emissions in the form of methane, nitrous oxide and carbon dioxide (including carbon sources and sinks, and the impact of energy consumption/bioenergy production) from Danish agriculture in the years 1990–2010. An analysis of possible measures to reduce the GHG emissions indicated that a 50–70% reduction of agricultural emissions by 2050 relative to 1990 is achievable, including mitigation measures in relation to the handling of manure and fertilisers, optimization of animal feeding, cropping practices, and land use changes with more organic farming, afforestation and energy crops. In addition, the bioenergy production may be increased significantly without reducing the food production, whereby Danish agriculture could achieve a positive energy balance.
Показать больше [+] Меньше [-]Water quality in the Tibetan Plateau: Metal contents of four selected rivers
2008
Huang, Xiang | Sillanpaa, Mika | Duo, Bu | Gjessing, Egil T.
The water used by 85% of the Asian population originates in Tibetan Plateau. During April and May of 2006, water samples were collected from four major Asian rivers in the Plateau (i.e. the Salween, Mekong, Yangtze River and Yarlung Tsangpo) and analyzed for Cu, Pb, Zn, Ag, Mo, Cd, Co, Cr, Ni, Li, Mn, Al, Fe, Mg and Hg. The results showed that elements such as Mg were rather high in Tibetan rivers, giving a mean electrical conductance of 36 mS/m. In a few locations, the results also showed relatively high concentrations of Al and Fe (>1 mg/L). However, the concentrations of Cu, Zn, Ag, Cd, and Cr were generally low. Contamination with Pb was identified at a few locations in the Salween and Ni at a few sites in the Yangtze River. For the first time, total dissolved metal contents in source water of four major Asian rivers were evaluated at the same time.
Показать больше [+] Меньше [-]Attributed radiative forcing of air pollutants from biomass and fossil burning emissions
2022
Jiang, Ke | Fu, Bo | Luo, Zhihan | Xiong, Rui | Men, Yatai | Shen, Huizhong | Li, Bengang | Shen, Guofeng | Tao, Shu
Energy is vital to human society but significantly contributes to the deterioration of environmental quality and the global issue of climate change. Biomass and fossil fuels are important energy sources but have distinct pollutant emission characteristics during the burning process. This study aimed at attributing radiative forcing of climate forcers, including greenhouse gases but also short-lived climate pollutants, from the burning of fossil and biomass fuels, and the spatiotemporal characteristics. We found that air pollutant emissions from the burning process of biofuel and fossil fuels induced RFs of 68.2 ± 36.8 mW m⁻² and 840 ± 225 mW m⁻², respectively. The relatively contribution of biomass burning emissions was 7.6% of that from both fossil and biofuel combustion processes, while its contribution in energy supply was 11%. These relative contributions varied obviously across different regions. The per unit energy consumption of biomass fuel in the developed regions, such as North America (0.57 ± 0.33 mW m⁻²/10⁷TJ) and Western Europe (0.98 ± 0.79 mW m⁻²/10⁷TJ), had higher impacts of combustion emission related RFs compared to that of developing regions, like China (0.40 ± 0.26 mW m⁻²/10⁷TJ), and South and South-East Asia (0.31 ± 0.71 mW m⁻²/10⁷TJ) where low efficiency biomass burning in residential sector produced significant amounts of organic matter that had a cooling effect. Note that the study only evaluated fuel combustion emission related RFs, and those associated with the production of fuels and land use change should be studied later in promoting a comprehensive understanding on the climate impacts of biomass utilization.
Показать больше [+] Меньше [-]Can C-budget of natural capital be restored through conservation agriculture in a tropical and subtropical environment?
2022
de Moraes Sá, João Carlos | Lal, R. | Briedis, Clever | de Oliveira Ferreira, Ademir | Tivet, Florent | Inagaki, Thiago Massao | Potma Gonçalves, Daniel Ruiz | Canalli, Lutécia Beatriz | Burkner dos Santos, Josiane | Romaniw, Jucimare
Conservation agriculture through no-till based on cropping systems with high biomass-C input, is a strategy to restoring the carbon (C) lost from natural capital by conversion to agricultural land. We hypothesize that cropping systems based on quantity, diversity and frequency of biomass-C input above soil C dynamic equilibrium level can recover the natural capital. The objectives of this study were to: i) assess the C-budget of land use change for two contrasting climatic environments, ii) estimate the C turnover time of the natural capital through no-till cropping systems, and iii) determine the C pathway since soil under native vegetation to no-till cropping systems. In a subtropical and tropical environment, three types of land use were used: a) undisturbed soil under native vegetation as the reference of pristine level; b) degraded soil through continuous tillage; and c) soil under continuous no-till cropping system with high biomass-C input. At the subtropical environment, the soil under continuous tillage caused loss of 25.4 Mg C ha⁻¹ in the 0–40 cm layer over 29 years. Of this, 17 Mg C ha⁻¹ was transferred into the 40–100 cm layers, resulting in the net negative C balance for 0–100 cm layer of 8.4 Mg C ha⁻¹ with an environmental cost of USD 1968 ha⁻¹. The 0.59 Mg C ha⁻¹ yr⁻¹ sequestration rate by no-till cropping system promote the C turnover time (soil and vegetation) of 77 years. For tropical environment, the soil C losses reached 27.0 Mg C ha⁻¹ in the 0–100 cm layer over 8 years, with the environmental cost of USD 6155 ha⁻¹, and the natural capital turnover time through C sequestration rate of 2.15 Mg C ha⁻¹ yr⁻¹ was 49 years. The results indicated that the particulate organic C and mineral associate organic C fractions are the indicators of losses and restoration of C and leading C pathway to recover natural capital through no-till cropping systems.
Показать больше [+] Меньше [-]Soil N2O emission in Cinnamomum camphora plantations along an urbanization gradient altered by changes in litter input and microbial community composition
2022
Xu, Xintong | He, Chang | Zhong, Chuan | Zhang, Qiang | Yuan, Xi | Hu, Xiaofei | Deng, Wenping | Wang, Jiawei | Du, Qu | Zhang, Ling
Urbanization alters land use, increasing the rate of greenhouse gas (GHG) emissions and hence atmospheric compositions. Nitrous oxide (N₂O) is a major GHG that contributes substantially to global warming. N₂O emissions are sensitive to changes in substrate availabilities, such as litter and N input, as well as micro-environmental factors caused by land-use change upon urbanization. However, the potential impacts of changing litter and N on soil N₂O emissions along urban-rural gradients is not well understood. Here, we conducted an in situ study over 19 months in Cinnamomum camphora plantations along an urban-rural gradient, to examine the effects of the urban-rural gradient, N and litter input on N₂O emissions from C. camphora plantation soils and the underlying mechanisms via N, litter and microbial communities. The results showed that urban soil N₂O emissions were 105% and 196% higher than those from suburban and rural soil, respectively, and co-occurred with a higher abundance of AOA, nirS and nirK genes. Litter removal increased cumulative N₂O emissions by 59.7%, 50.9% and 43.3% from urban, suburban and rural soils, respectively. Compared with litter kept treatment, increases in AOA and nirK abundance were observed in urban soil, and higher rural nirS abundance occurred following litter removal. Additionally, the relatively higher soil temperature and available N content in the urban soil increased N₂O emissions compared with the suburban and rural soil. Therefore, in addition to changes in microbial communities and abiotic environmental factors, litter kept in C. camphora plantations along an urban-rural gradient is also important in mitigating N₂O emissions, providing a potential strategy for the mitigation of N₂O emissions.
Показать больше [+] Меньше [-]The conversion of subtropical forest to tea plantation changes the fungal community and the contribution of fungi to N2O production
2020
Zheng, Ningguo | Yu, Yongxiang | Wang, Juan | Chapman, Stephen J. | Yao, Huaiying | Zhang, Yingying
The conversion of natural forests to tea plantations largely affects soil nitrous oxide (N₂O) emissions and soil microbial communities. However, the impacts of this conversion on the contribution of fungi to N₂O emission and on fungal community structure remain unclear. In this study, we determined the soil N₂O emission rate, N₂O production by fungi, associated fungal community diversity, and related ecological factors in chronological changes of tea crop systems (3, 36 and 105 years old tea orchards named T3, T36 and T105, respectively), and in an adjacent soil from a natural forest. The results indicate that the tea plantations significantly enhanced soil N₂O production compared with the forest soil. Tea plantations significantly decreased soil pH and C/N ratio, but increased soil inorganic nitrogen (N). Furthermore, they increased the fungal contribution to the production of soil N₂O, but decreased the bacterial counterpart. We also observed that fungal community and functional composition differed distinctly between tea plantations and forest. Additionally, most of the fungal groups in high N₂O emission soils (T36 and T105) were identified as the genus Fusarium, which were positively correlated with soil N₂O emissions. The variation in N₂O emission response could be well explained by NO₃⁻-N, soil organic carbon (SOC), C/N, and Fusarium, which contributed to up to 97% of the observed variance. Altogether, these findings provide significant direct evidence that the increase of soil N₂O emissions and fungal communities be attributed to the conversion of natural forest to tea plantations.
Показать больше [+] Меньше [-]Evaluating soil and nutrients (C, N, and P) loss in Chinese Torreya plantations
2020
Chen, Xiongwen | Xiao, Pengfei | Niu, Jianzhi | Chen, Xi
Improper land-use changes may lead to a loss of soil resources and cause environmental pollution. Chinese Torreya plantation (hereafter CTP) is an important cash tree plantation for nuts production in the mountainous areas of subtropical China. The increasing development of CTPs, to increase seed production, can result in the complete erasure of local natural vegetation.In this study, the vulnerability to soil erosion, loss of soil organic carbon (SOC) and nutrients in CTPs due to land-use change were evaluated. The results indicated that the rates of diffusive soil erosion in the young CTPs with extreme precipitation were about six-fold higher than with the natural vegetation. At sites with a similar slope, there was no significant difference in soil erosion levels between the young and old CTPs. The old CTPs did not hold significantly higher levels of SOC and soil total nitrogen (STN) in their topsoil when compared with the young CTPs. The natural mixed broadleaved subtropical forests lost about 35% of their SOC and 25% of their STN after they were converted into CTPs, but the CTPs had higher soil total phosphorus. The C: N ratios at the different sites were close to 11:1, but the N: P ratios were diverse. There were high levels of organic carbon, nitrogen and phosphorus in stream water. Adequate coverage of natural vegetation within or around the CTPs should be maintained to decrease soil erosion and nutrient loss. Suggestions to develop CTPs while protecting the environment are discussed. Overall, it was determined that aspects of the current management practices and strategies for developing CTPs should be changed to decrease soil erosion and nutrient loss.
Показать больше [+] Меньше [-]