Уточнить поиск
Результаты 1-10 из 13
“Smart” nanosensors for early detection of corrosion: Environmental behavior and effects on marine organisms Полный текст
2022
Martins, Roberto Borges | Figueiredo, Joana | Sushkova, Alesia | Wilhelm, Manon | Tedim, João | Loureiro, Susana
Corrosion is an environmental and economic global problem. “Smart” or stimuli-responsive colorimetric nanosensors for maritime coatings have been proposed as an asset to overcome the limitations of the current monitoring techniques by changing color in the presence of triggers associated with the early stages of corrosion. Layered double hydroxides (Zn–Al LDH; Mg–Al LDH) and silica mesoporous nanocapsules (SiNC) were used as precursor nanocarriers of active compounds: hexacyanoferrate ions ([Fe(CN)₆]³⁻) and phenolphthalein (PhPh), respectively. Additionally, the safer-by-design principles were employed to optimize the nanosensors in an eco-friendly perspective (e.g., regular vs. warm-washed SiNC-PhPh; immobilization using different carriers: Zn–Al LDH-[Fe(CN)₆]³⁻ vs. Mg–Al LDH-[Fe(CN)₆]³⁻). Therefore, the present study aims to assess the environmental behavior in saltwater and the toxic effects of the nanosensors, their nanocarriers, and the active compounds on the marine microalgae Tetraselmis chuii and the crustacean Artemia salina. Briefly, tested compounds exhibited no acute toxic effects towards A. salina (NOEC = 100 mg/L), apart from SiNC-PhPh (LC₅₀ = 2.96 mg/L) while tested active compounds and nanosensors caused significant growth inhibition on T. chuii (lowest IC₅₀ = 0.40 mg/L for SiNC-PhPh). The effects of [Fe(CN)₆]³⁻ were similar regardless of the nanocarrier choice. Regarding SiNC-PhPh, its toxicity can be decreased at least twice by simply reinforcing the nanocapsules washing, which contributes to the removal (at least partially) of the surfactants residues. Thus, implementing safe-by-design strategies in the early stages of research proved to be critical, although further progress is still needed towards the development of truly eco-friendly nanosensors.
Показать больше [+] Меньше [-]Mechanism of thorium-nitrate and thorium-dioxide induced cytotoxicity in normal human lung epithelial cells (WI26): Role of oxidative stress, HSPs and DNA damage Полный текст
2021
Das, Sourav Kumar | Ali, Manjoor | Shetake, Neena G. | Dumpala, Rama Mohan R. | Pandey, Badri N. | Kumar, Amit
Inhalation represents the most prevalent route of exposure with Thorium-232 compounds (Th-nitrate/Th-dioxide)/Th-containing dust in real occupational scenario. The present study investigated the mechanism of Th response in normal human alveolar epithelial cells (WI26), exposed to Th-nitrate or colloidal Th-dioxide (1–100 μg/ml, 24–72 h). Assessment in terms of changes in cell morphology, cell proliferation (cell count), plasma membrane integrity (lactate dehydrogenase leakage) and mitochondrial metabolic activity (MTT reduction) showed that Th-dioxide was quantitatively more deleterious than Th-nitrate to WI26 cells. TEM and immunofluorescence analysis suggested that Th-dioxide followed a clathrin/caveolin-mediated endocytosis, however, membrane perforation/non-endocytosis seemed to be the mode of Th internalization in cells exposed to Th-nitrate. Th-estimation by ICP-MS showed significantly higher uptake of Th in cells treated with Th-dioxide than with Th-nitrate at a given concentration. Both Th-dioxide and nitrate were found to increase the level of reactive oxygen species, which seemed to be responsible for lipid peroxidation, alteration in mitochondrial membrane potential and DNA-damage. Amongst HSPs, the protein levels of HSP70 and HSP90 were affected differentially by Th-nitrate/dioxide. Specific inhibitors of ATM (KU55933) or HSP90 (17AAG) were found to increase the Th- cytotoxicity suggesting prosurvival role of these signaling molecules in rescuing the cells from Th-toxicity.
Показать больше [+] Меньше [-]Protective effects of a novel pyrazolecarboxamide derivative against lead nitrate induced oxidative stress and DNA damage in Clarias gariepinus Полный текст
2019
Soliman, Hamdy A.M. | Abū al-Saʻūd, Muḥammad Ḥāmid Muʻawwaḍ | Lee, Jae-seong | Sayed, Alaa El-Din H.
Pyrazole derivatives display diverse biological and pharmacological activities. The aim of this study is to investigate the antioxidant properties of a novel pyrazolecarboxamide derivative (4-amino-N-[(4-chlorophenyl)]-3-methyl-1-phenyl-1H-thieno [2, 3-c] pyrazole-5-carboxamide) in African catfish, Clarias gariepinus, exposed to 1 mg/L PbNO₃. Fish were intramuscularly injected with pyrazole-5-carboxamidederivative according to the following groupings: Group 1 (control), Group 2 (1 mg/L lead nitrate), Group 3 (1 mg/L lead nitrate + 5 mg pyrazole derivative/kg body weight), and Group 4 (1 mg/L lead nitrate + 10 mg pyrazole derivative/kg body weight) for two weeks and four weeks. Lead nitrate (1 mg/L) caused significant elevation of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine, uric acid, cholesterol, and glucose-6-phosphate dehydrogenase (G6PDH) compared to the control group after two and four weeks of exposure, while serum total lipids, alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) were significantly reduced compared to the control group. Furthermore, levels of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) and total antioxidant capacity (TAC) were reduced in group 2 compared to the control group. However, in group 2, hepatic lipid peroxidation (LPO) and DNA fragmentation percentage were significantly increased compared to the control group. Histopathological changes in the liver of lead-exposed groups included marked disturbance of hepatic tissue organization, degeneration of hepatocytes, dilation of blood sinusoids and the central vein as well as necrosis. Injection of pyrazole derivative for two weeks and four weeks reversed alterations in biochemical parameters, antioxidant biomarkers, lipid peroxidation, hepatic DNA damage, and histopathological changes in liver tissue induced by 1 mg/L lead nitrate. This amelioration was higher in response to high-dose pyrazole derivative (10 mg) at the fourth week of exposure, showing concentration-and time-dependency. Overall, the sensitized derivative pyrazolecarboxamide is likely a useful tool to minimize the effects of lead toxicity due to its potent antioxidant activity.
Показать больше [+] Меньше [-]Assessment of lung cell toxicity of various gasoline engine exhausts using a versatile in vitro exposure system Полный текст
2018
Bisig, Christoph | Comte, Pierre | Güdel, Martin | Czerwiński, Janusz | Mayer, Andreas | Müller, Loretta | Petri-Fink, Alke | Rothen-Rutishauser, Barbara
Adverse effect studies of gasoline exhaust are scarce, even though gasoline direct injection (GDI) vehicles can emit a high number of particles.The aim of this study was to conduct an in vitro hazard assessment of different GDI exhausts using two different cell culture models mimicking the human airway. In addition to gasoline particle filters (GPF), the effects of two lubrication oils with low and high ash content were assessed, since it is known that oils are important contributors to exhaust emissions.Complete exhausts from two gasoline driven cars (GDI1 and GDI2) were applied for 6 h (acute exposure) to a multi-cellular human lung model (16HBE14o-cell line, macrophages, and dendritic cells) and a primary human airway model (MucilAir™). GDI1 vehicle was driven unfiltered and filtered with an uncoated and a coated GPF. GDI2 vehicle was driven under four settings with different fuels: normal unleaded gasoline, 2% high and low ash oil in gasoline, and 2% high ash oil in gasoline with a GPF. GDI1 unfiltered was also used for a repeated exposure (3 times 6 h) to assess possible adverse effects.After 6 h exposure, no genes or proteins for oxidative stress or pro-inflammation were upregulated compared to the filtered air control in both cell systems, neither in GDI1 with GPFs nor in GDI2 with the different fuels. However, the repeated exposure led to a significant increase in HMOX1 and TNFa gene expression in the multi-cellular model, showing the responsiveness of the system towards gasoline engine exhaust upon prolonged exposure.The reduction of particles by GPFs is significant and no adverse effects were observed in vitro during a short-term exposure. On the other hand, more data comparing different lubrication oils and their possible adverse effects are needed. Future experiments also should, as shown here, focus on repeated exposures.
Показать больше [+] Меньше [-]Does zebra mussel (Dreissena polymorpha) represent the freshwater counterpart of Mytilus in ecotoxicological studies? A critical review Полный текст
2015
Binelli, A. | Della Torre, C. | Magni, S. | Parolini, M.
One of the fundamentals in the ecotoxicological studies is the need of data comparison, which can be easily reached with the help of a standardized biological model. In this context, any biological model has been still proposed for the biomonitoring and risk evaluation of freshwaters until now. The aim of this review is to illustrate the ecotoxicological studies carried out with the zebra mussel Dreissena polymorpha in order to suggest this bivalve species as possible reference organism for inland waters. In detail, we showed its application in biomonitoring, as well as for the evaluation of adverse effects induced by several pollutants, using both in vitro and in vivo experiments. We discussed the advantages by the use of D. polymorpha for ecotoxicological studies, but also the possible limitations due to its invasive nature.
Показать больше [+] Меньше [-]Development of physiologically-based toxicokinetic-toxicodynamic (PBTK-TD) model for 4-nonylphenol (4-NP) reflecting physiological changes according to age in males: Application as a new risk assessment tool with a focus on toxicodynamics Полный текст
2022
Jeong, Seung-Hyun | Jang, Ji-Hun | Lee, Yong-Bok
Environmental exposure to 4-nonylphenol (4-NP) is extensive, and studies related to human risk assessment must continue. Especially, prediction of toxicodynamics (TDs) related to reproductive toxicity in males is very important in risk-level assessment and management of 4-NP. This study aimed to develop a physiologically-based-toxicokinetic-toxicodynamic (PBTK-TD) model that added a TD prostate model to the previously reported 4-n-nonylphenol (4-n-NP) physiologically-based-pharmacokinetic (PBPK) model. Modeling was performed under the assumption of similar TKs between 4-n-NP and 4-NP because TK experiments on 4-NP, a random-mixture, are practically difficult. This study was very important to quantitatively predict the TKs and TDs of 4-NP by age at exposure using an advanced PBTK-TD model that reflected physiological-changes according to age. TD-modeling was performed based on the reported toxic effects of 4-NP on RWPE-1 cells, a human-prostate-epithelial-cell-line. Through a meta-analysis of reported human physiological data, body weight, tissue volume, and blood flow rate patterns according to age were mathematically modeled. These relationships were reflected in the PBTK-TD model for 4-NP so that the 4-NP TK and TD changes according to age and their differences could be confirmed. Differences in TK and TD parameters of 4-NP at various ages were not large, within 3.61-fold. Point-of-departure (POD) and reference-doses for each age estimated using the model varied as 426.37–795.24 and 42.64–79.52 μg/kg/day, but the differences (in POD or reference doses between ages) were not large, at less than 1.87-times. The PBTK-TD model simulation predicted that even a 100-fold 4-NP PODₘₐₙ dose would not have large toxicity to the prostate. With a focus on TDs, the predicted maximum possible exposure of 4-NP was as high as 6.06–23.60 mg/kg/day. Several toxicity-related values estimated by the dose-response curve were higher than those calculated, depending upon the PK or TK, which would be useful as a new exposure limit for prostate toxicity of 4-NP.
Показать больше [+] Меньше [-]Toxic elements and associations with hematology, plasma biochemistry, and protein electrophoresis in nesting loggerhead sea turtles (Caretta caretta) from Casey Key, Florida Полный текст
2017
Perrault, Justin R. | Stacy, Nicole I. | Lehner, Andreas F. | Poor, Savannah K. | Buchweitz, John P. | Walsh, Catherine J.
Toxic elements (arsenic, cadmium, lead, mercury, selenium, thallium) are a group of contaminants that are known to elicit developmental, reproductive, general health, and immune system effects in reptiles, even at low concentrations. Reptiles, including marine turtles, are susceptible to accumulation of toxic elements due to their long life span, low metabolic rate, and highly efficient conversion of prey into biomass. The objectives of this study were to (1) document concentrations of arsenic, cadmium, lead, mercury, selenium, and thallium in whole blood and keratin from nesting loggerhead sea turtles (Caretta caretta) from Casey Key, Florida and document correlations thereof and (2) correlate whole blood toxic element concentrations to various hematological and plasma biochemistry analytes. Baselines for various hematological and plasma analytes and toxic elements in whole blood and keratin (i.e., scute) in nesting loggerheads are documented. Various correlations between the toxic elements and hematological and plasma biochemistry analytes were identified; however, the most intriguing were negative correlations between arsenic, cadmium, lead, and selenium with and α- and γ-globulins. Although various extrinsic and intrinsic variables such as dietary and feeding changes in nesting loggerheads need to be considered, this finding may suggest a link to altered humoral immunity. This study documents a suite of health variables of nesting loggerheads in correlation to contaminants and identifies the potential of toxic elements to impact the overall health of nesting turtles, thus presenting important implications for the conservation and management of this species.
Показать больше [+] Меньше [-]Acute phenanthrene toxicity to juvenile diploid and triploid African catfish (Clarias gariepinus): Molecular, biochemical, and histopathological alterations Полный текст
2016
Karamī, ʻAlī | Romano, Nicholas | Hamzah, Hazilawati | Simpson, Stuart L. | Yap, Chee Kong
Information on the biological responses of polyploid animals towards environmental contaminants is scarce. This study aimed to compare reproductive axis-related gene expressions in the brain, plasma biochemical responses, and the liver and gill histopathological alterations in diploid and triploid full-sibling juvenile African catfish (Clarias gariepinus). Fish were exposed for 96 h to one of the two waterborne phenanthrene (Phe) concentrations [mean measured (SD): 6.2 (2.4) and 76 (4.2) μg/L]. In triploids, exposure to 76 μg/L Phe increased mRNA level of fushi tarazu-factor 1 (ftz-f1). Expression of tryptophan hydroxylase2 (tph2) was also elevated in both ploidies following the exposure to 76 μg/L Phe compared to the solvent control. In triploids, 76 μg/L Phe increased plasma alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) levels compared to the other Phe-exposed group. It also elevated lactate and glucose contents relative to the other groups. In diploids, however, biochemical biomarkers did not change. Phenanthrene exposures elevated glycogen contents and the prevalence of histopathological lesions in the liver and gills of both ploidies. This study showed substantial differences between diploids and triploids on biochemical and molecular biomarker responses, but similar histopathological alterations following acute Phe exposures.
Показать больше [+] Меньше [-]Targeting mitochondrial permeability transition pore ameliorates PM2.5-induced mitochondrial dysfunction in airway epithelial cells Полный текст
2022
Liang, Yingmin | Chu, Pak Hin | Tian, Linwei | Ho, Kin Fai | Ip, Mary Sau-man | Mak, Judith Choi Wo
Particulate matter with aerodynamic diameter not larger than 2.5 μm (PM₂.₅) escalated the risk of respiratory diseases. Mitochondrial dysfunction may play a pivotal role in PM₂.₅-induced airway injury. However, the potential effect of PM₂.₅ on mitochondrial permeability transition pore (mPTP)-related airway injury is still unknown. This study aimed to investigate the role of mPTP in PM₂.₅-induced mitochondrial dysfunction in airway epithelial cells in vitro. PM₂.₅ significantly reduced cell viability and caused apoptosis in BEAS-2B cells. We also found PM₂.₅ caused cellular and mitochondrial morphological alterations, evidenced by the disappearance of mitochondrial cristae, mitochondrial swelling, and the rupture of the outer mitochondrial membrane. PM₂.₅ induced mPTP opening via upregulation of voltage-dependent anion-selective channel (VDAC), leading to deprivation of mitochondrial membrane potential, increased mitochondrial reactive oxygen species (ROS) generation and intracellular calcium level. PM₂.₅ suppressed mitochondrial respiratory function by reducing basal and maximal respiration, and ATP production. The mPTP targeting compounds cyclosporin A [CsA; a potent inhibitor of cyclophilin D (CypD)] and VBIT-12 (a selective VDAC1 inhibitor) significantly inhibited PM₂.₅-induced mPTP opening and apoptosis, and preserved mitochondrial function by restoring mitochondrial membrane potential, reducing mitochondrial ROS generation and intracellular calcium content, and maintaining mitochondrial respiration function. Our data further demonstrated that PM₂.₅ caused reduction in nuclear expressions of PPARγ and PGC-1α, which were reversed in the presence of CsA. These findings suggest that mPTP might be a potential therapeutic target in the treatment of PM₂.₅-induced airway injury.
Показать больше [+] Меньше [-]The effects of air pollutants exposure on the transmission and severity of invasive infection caused by an opportunistic pathogen Streptococcus pyogenes Полный текст
2022
Zhi, Yong | Chen, Xinyu | Cao, Guangxu | Chen, Fengjia | Seo, Ho Seong | Li, Fang
Currently, urbanization is associated with an increase in air pollutants that contribute to invasive pathogen infections by altering the host's innate immunity and antimicrobial resistance capability. Streptococcus pyogenes, also known as Group A Streptococcus (GAS), is a gram-positive opportunistic pathogen that causes a wide range of diseases, especially in children and immunosuppressed individuals. Diesel exhaust particle (DEP), a significant constituent of particulate matter (PM), are considered a prominent risk factor for respiratory illness and circulatory diseases worldwide. Several clinical and epidemiological studies have identified a close association between PM and the prevalence of viral and bacterial infections. This study investigated the role of DEP exposure in increasing pulmonary and blood bacterial counts and mortality during GAS M1 strain infection in mice. Thus, we characterized the upregulation of reactive oxygen species production and disruption of tight junctions in the A549 lung epithelial cell line due to DEP exposure, leading to the upregulation of GAS adhesion and invasion. Furthermore, DEP exposure altered the leukocyte components of infiltrated cells in bronchoalveolar lavage fluid, as determined by Diff-Quik staining. The results highlighted the DEP-related macrophage dysfunction, neutrophil impairment, and imbalance in pro-inflammatory cytokine production via the toll-like receptor 4/mitogen-activated protein kinase signaling axis. Notably, the tolerance of the GAS biofilms toward potent antibiotics and bacterial resistance against environmental stresses was also significantly enhanced by DEP. This study aimed to provide a better understanding of the physiological and molecular interactions between exposure to invasive air pollutants and susceptibility to invasive GAS infections.
Показать больше [+] Меньше [-]