Уточнить поиск
Результаты 1-10 из 46
Sponges as bioindicators for microparticulate pollutants?
2021
Girard, Elsa B. | Fuchs, Adrian | Kaliwoda, Melanie | Lasut, Markus | Ploetz, Evelyn | Schmahl, Wolfgang W. | Wörheide, Gert
Amongst other threats, the world’s oceans are faced with man-made pollution, including an increasing number of microparticulate pollutants. Sponges, aquatic filter-feeding animals, are able to incorporate fine foreign particles, and thus may be a potential bioindicator for microparticulate pollutants. To address this question, 15 coral reef demosponges sampled around Bangka Island (North Sulawesi, Indonesia) were analyzed for the nature of their foreign particle content using traditional histological methods, advanced light microscopy, and Raman spectroscopy. Sampled sponges accumulated and embedded the very fine sediment fraction (<200 μm), absent in the surrounding sand, in the ectosome (outer epithelia) and spongin fibers (skeletal elements), which was confirmed by two-photon microscopy. A total of 34 different particle types were identified, of which degraded man-made products, i.e., polystyrene, particulate cotton, titanium dioxide and blue-pigmented particles, were incorporated by eight specimens at concentrations between 91 and 612 particle/g dry sponge tissue. As sponges can weigh several hundreds of grams, we conservatively extrapolate that sponges can incorporate on average 10,000 microparticulate pollutants in their tissue. The uptake of particles, however, appears independent of the material, which suggests that the fluctuation in material ratios is due to the spatial variation of surrounding microparticles. Therefore, particle-bearing sponges have a strong potential to biomonitor microparticulate pollutants, such as microplastics and other degraded industrial products.
Показать больше [+] Меньше [-]Formation mechanism and environmental drivers of Alexandrium catenella bloom events in the coastal waters of Qinhuangdao, China
2022
Wu, Hai-Yan | Dong, Chen-Fan | Zheng, Guan-Chao | Zhang, Zhi-Hua | Zhang, Ya-Ya | Tan, Zhi-Jun | Gu, Hai-Feng
In the last 5 years, paralytic shellfish toxins (PSTs) have been recurrently detected in mollusks farmed in the mussel culture area of Qinhuangdao city, along with the occurrence of toxic outbreaks linked to dinoflagellate species of the Alexandrium genus. To understand the formation mechanism and variation of these events, continuous and comprehensive PSTs monitoring was carried out between 2017 and 2020. Through the analysis of both phytoplankton and cysts via light microscopy and quantitative polymerase chain reaction, it was shown that Alexandrium catenella was responsible for the production of PSTs, which consisted mainly of gonyautoxins 1,4 (GTX1/4, 87%) and GTX2/3 (13%). During bloom events in 2019, mussels accumulated the highest PSTs value (929 μg STX di-HCl eq·kg⁻¹) in conjunction with the peak of cell abundances, and toxin profiles were consistent with high distributions of GTX1/4, GTX2/3, and Neosaxitoxin. Toxin metabolites vary in different substances and mainly transferred to a stable proportion of α-epimer: β-epimers 3:1. The environmental drivers of Alexandrium blooms included the continuous rise of water temperature (>4 °C) and calm weather with low wind speed and no significant precipitation. By comparing toxin profiles and method sensitivity, it was found that dissolved toxins in seawater are more useful for early warning. These results have important implications for the effective monitoring and management of paralytic shellfish poisoning outbreaks.
Показать больше [+] Меньше [-]Adverse effects of fullerenes (nC₆₀) spiked to sediments on Lumbriculus variegatus (Oligochaeta)
2011
Pakarinen, K. | Petersen, E.J. | Leppänen, M.T. | Akkanen, J. | Kukkonen, J.V.K.
Effects of fullerene-spiked sediment on a benthic organism, Lumbriculus variegatus (Oligochaeta), were investigated. Survival, growth, reproduction, and feeding rates were measured to assess possible adverse effects of fullerene agglomerates produced by water stirring and then spiked to a natural sediment. L. variegatus were exposed to 10 and 50 mg fullerenes/kg sediment dry mass for 28 d. These concentrations did not impact worm survival or reproduction compared to the control. Feeding activities were slightly decreased for both concentrations indicating fullerenes’ disruptive effect on feeding. Depuration efficiency decreased in the high concentration only. Electron and light microscopy and extraction of the worm fecal pellets revealed fullerene agglomerates in the gut tract but not absorption into gut epithelial cells. Micrographs also indicated that 16% of the epidermal cuticle fibers of the worms were not present in the 50 mg/kg exposures, which may make worms susceptible to other contaminants.
Показать больше [+] Меньше [-]Free-living dinoflagellates of the central Red Sea, Saudi Arabia: Variability, new records and potentially harmful species
2019
Prabowo, Danang Ambar | Agusti, Susana
The diversity of free-living dinoflagellates in the coastal areas of the central Red Sea, Saudi Arabia, was studied from April 2016 to March 2017. A total of 106 dinoflagellates belonging to 36 genera, 20 families and 7 orders were identified and characterized using light microscopy. Of these, 47 taxa were potentially harmful, and 60 taxa were recorded for the first time from the Red Sea. The unexpectedly high species diversity, including new records, was due to the benthic species. The monthly variability of planktonic species records exhibited negative correlations with temperature and salinity, although in most cases, the links between them were insignificant. Subsequently, the dinoflagellates checklist for the entire Red Sea was updated and showed that there were currently 395 taxa and 66 genera. The results of this study provide a solid foundation for future studies of dinoflagellate biodiversity in the Red Sea, particularly for benthic and harmful species.
Показать больше [+] Меньше [-]Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean
2014
Desforges, Jean-Pierre W. | Galbraith, Moira | Dangerfield, Neil | Ross, Peter S.
We document the abundance, composition and distribution of microplastics in sub-surface seawaters of the northeastern Pacific Ocean and coastal British Columbia. Samples were acid-digested and plastics were characterized using light microscopy by type (fibres or fragments) and size (<100, 100–500, 500–100 and >1000μm). Microplastics concentrations ranged from 8 to 9200particles/m3; lowest concentrations were in offshore Pacific waters, and increased 6, 12 and 27-fold in west coast Vancouver Island, Strait of Georgia, and Queen Charlotte Sound, respectively. Fibres accounted for ∼75% of particles on average, although nearshore samples had more fibre content than offshore (p<0.05). While elevated microplastic concentrations near urban areas are consistent with land-based sources, the high levels in Queen Charlotte Sound appeared to be the result of oceanographic conditions that trap and concentrate debris. This assessment of microplastics in the NE Pacific is of interest in light of the on-coming debris from the 2011 Tohoku Tsunami.
Показать больше [+] Меньше [-]Considerations when using microplates and Neubauer counting chamber in ecotoxicity tests on microplastics
2021
Prata, Joana C. | Venâncio, Cátia | da Costa, João P. | Lopes, Isabel | Duarte, Armando C. | Rocha-Santos, Teresa
The ubiquity of microplastics raises issues regarding contamination control measures and laboratory practices. The objective was to adapt the use of counting chambers and plastic microplates on the ecotoxicity evaluation of microplastics. Counting chambers, originally used to quantify cells, can also be used to count high concentrations of microplastics (<100 μm) used in laboratory assays. By decontaminating the chamber and mixing the test solution with Nile Red (1:1), fluorescent particles can be easily counted under optical microscopy. Microplate wells, due to their composition, can be contaminated or release microplastics to the test medium, which can interfere with the results of ecotoxicity assays or spectroscopy readings. A cleaning method based on ethanol was developed, which effectively removed particles by 91% without interfering with microalgae yield. Besides providing practical applications that can improve ecotoxicity assays, this work intends to raise awareness on the need to adapt laboratory practices when working with microplastics.
Показать больше [+] Меньше [-]Quantitative and qualitative determination of microplastics in oyster, seawater and sediment from the coastal areas in Zhuhai, China
2021
Wang, Duojia | Su, Lingcheng | Ruan, Huada Daniel | Chen, Jiajun | Lu, Jianzun | Lee, Chiu-Hong | Jiang, Sabrina Yanan
Microplastics as a new class of environmental contaminants have become the hot issue of global concern. We conducted quantitative and qualitative experiments to investigate microplastics in oyster, seawater and sediment along the Zhuhai coastline. The soft tissues of oysters were digested with potassium hydroxide (10%) and hydrogen peroxide (30%), seawaters and sediments with hydrogen peroxide (30%) to degrade organic matter, and analyzed using a digital camera, optical microscopy and micro-ATR-FTIR. The abundance of microplastics were in the range of 0.14–7.90 n/g in oysters (wet weight), 10.00–27.50 n/L in seawaters and 0.053–0.26 n/g in sediments. The fiber and fragment shape, black color, 101–500 μm of size and polyethylene composition were all classified as the major constituents of microplastics. The level of contaminants in oysters was correlated to those in their surrounding environments. Therefore, oysters may serve as a promising sentinel species for the indication of microplastic pollution in the coastal zone of Zhuhai.
Показать больше [+] Меньше [-]Microplastics do not increase toxicity of a hydrophobic organic chemical to marine plankton
2019
Beiras, Ricardo | Tato, Tania
Planktonic sea-urchin larvae actively ingest polyethylene microplastics (MP) that accumulate in the larval stomach and can be distinguished from natural food using polarized light microscopy. MP filtering rates were similar to those of natural particles (microalgae) of the same size range; 0.30 to 0.35 mL min⁻¹. However, the ingestion of MP did not increase the toxicity of a hydrophobic organic chemical, the 4‑n‑nonylphenol (NP), either in microalgae-fed or starved larvae. The 48 h EC₅₀ of NP was more than two fold higher in fed (158.8 to 190.9 μg L⁻¹) compared to starved larvae (64.3 to 83.7 μg L⁻¹), disregarding the presence and amount of MP, which did not significantly affect larval growth. Therefore, MP did not act as vectors of a hydrophobic chemical such as NP to these planktonic organisms. These results challenge the hypothetical role of MP as vectors of organic contaminants to marine food webs.
Показать больше [+] Меньше [-]Molecular methods for cost-efficient monitoring of HAB (harmful algal bloom) dinoflagellate resting cysts
2019
Perini, F. | Bastianini, M. | Capellacci, S. | Pugliese, L. | DiPoi, E. | Cabrini, M. | Buratti, S. | Marini, M. | Penna, A.
Cyst abundance and identity are essential for understanding and predicting blooms, and for assessing the dispersal of toxic target dinoflagellate species by natural or human mediated ways, as with ballast waters. The aim of this study was to apply rapid, specific and sensitive qPCR assays to enumerate toxic dinoflagellate cysts in sediment samples collected from Adriatic harbours. The molecular standard curves of various target species allowed obtaining the rDNA copy number per cyst. The analytical sensitivity for specific standard curves was determined to be 2 or 10 rDNA copies per reaction. The abundance varied in the range of 1–747 dinoflagellate cysts g⁻¹ dry weight. The assays showed greater sensitivity as compared to counts by light microscopy. This qPCR method revealed a powerful tool for the quantification of cysts from toxic dinoflagellate resting stages in sediment samples from Adriatic ports.
Показать больше [+] Меньше [-]Screening for microplastic particles in plankton samples: How to integrate marine litter assessment into existing monitoring programs?
2015
Gorokhova, Elena
Microplastics (MPs) are a newly recognized type of environmental pollution in aquatic systems; however no monitoring of these contaminants is conducted, mostly due to the lack of routine quantification. In the net samples collected with a 90-μm WP2 net, pelagic MP abundance was quantified by light microscopy and evaluated as a function of inshore–offshore gradient, depth, and season; the same samples were used for zooplankton analysis. The MP abundance was ∼102–104particlesm−3, with no significant inshore–offshore gradient during summer but increasing offshore in winter. MP abundance in deeper layers was positively affected by zooplankton abundance in the upper layers and significantly lower during winter compared to summer. These findings indicate heterogeneity of MP distribution due to biotic and abiotic factors and suggest that samples collected for other purposes can be used for quantification of MPs in the Baltic Sea, thus facilitating integration of MP assessment into existing monitoring schemes.
Показать больше [+] Меньше [-]