Уточнить поиск
Результаты 1-10 из 209
Industrial-scale aerobic composting of livestock manures with the addition of biochar: Variation of bacterial community and antibiotic resistance genes caused by various composting stages Полный текст
2022
Zhu, Pengcheng | Wu, Yuxin | Ru, Yuning | Hou, Yihang | San, Kim Woon | Yu, Xiaona | Guo, Weihua
The presence of large amounts of antibiotic resistance genes (ARGs) in livestock manures poses an impending, tough safety risk to ecosystems. To investigate more comprehensively the mechanisms of ARGs removal from industrial-scale composting of livestock manure based on biochar addition, we tracked the dynamics of bacterial community and ARGs at various stages of aerobic composting of livestock manures with 10% biochar. There were no significant effects of biochar on the bacterial community and the profiles of ARGs. During aerobic composting, the relative abundance of ARGs and mobile genetic elements (MGEs) showed overall trends of decreasing and then increasing. The key factor driving the dynamics of ARGs was bacterial community composition, and the potential hosts of ARGs were Caldicoprobacter, Tepidimicrobium, Ignatzschineria, Pseudogracilibacillus, Actinomadura, Flavobacterium and Planifilum. The retention of the thermophilic bacteria and the repopulation of the initial bacteria were the dominant reasons for the increase in ARGs at maturation stage. Additionally, among the MGEs, the relative abundance of transposon gene was substantially removed, while the integron genes remained at high relative abundance. Our results highlighted that the suitability of biochar addition to industrial-scale aerobic composting needs to be further explored and that effective measures are needed to prevent the increase of ARGs content on maturation stage.
Показать больше [+] Меньше [-]Cu phytoextraction and biomass utilization as essential trace element feed supplements for livestock Полный текст
2022
Wang, Xiaolin | Fernandes de Souza, Marcella | Mench, Michel J. | Li, Haichao | Ok, Yong Sik | Tack, Filip M.G. | Meers, Erik
Cu phytoextraction and biomass utilization as essential trace element feed supplements for livestock Полный текст
2022
Wang, Xiaolin | Fernandes de Souza, Marcella | Mench, Michel J. | Li, Haichao | Ok, Yong Sik | Tack, Filip M.G. | Meers, Erik
Copper (Cu), as an essential element, is added to animal feed to stimulate growth and prevent disease. The forage crop alfalfa (Medicago sativa L.) produced during Cu phytoextraction may be considered a biofortified crop to substitute the Cu feed additives for livestock production, beneficially alleviating Cu contamination in soils and reducing its input into agriculture systems. To assess this, alfalfa was grown in three similar soils with different Cu levels, i.e., 11, 439 and 779 mg kg⁻¹ for uncontaminated soil (A), moderately Cu-contaminated soil (B) and highly Cu-contaminated soil (C), respectively. EDDS (Ethylenediamine-N,N′-disuccinic acid) was applied to the soils seven days before the first cutting at four rates (0, 0.5, 2 and 5 mmol kg⁻¹) to enhance bioavailable Cu uptake. Alfalfa grew well in soils A and B but not in the highly Cu-contaminated soil. After applying EDDS, a significant biomass reduction of the first cutting shoot was only observed with 5 mmol kg⁻¹ EDDS in the highly Cu-contaminated soil, with a 45% (P < 0.05) decrease when compared to the control. Alfalfa grown in the three soils gradually wilted after the first cutting with 5 mmol kg⁻¹ EDDS, and Cu concentrations in the first cutting shoot were augmented strongly, by 250% (P < 0.05), 3500% (P < 0.05) and 6700% (P < 0.05) compared to the controls, respectively. Cu concentrations in alfalfa shoots were found to be higher in this study than in some fodder plants and further augmented in soils with higher Cu levels and with EDDS application. These findings suggest that alfalfa grown on clean soils or soils with up to 450 mg Cu kg⁻¹ (with appropriate EDDS dosages) has the potential to be considered as a partial Cu supplementation for livestock. This research laid the foundation for the integration between Cu-phytoextraction and Cu-biofortification for livestock.
Показать больше [+] Меньше [-]Cu phytoextraction and biomass utilization as essential trace element feed supplements for livestock Полный текст
2022
Wang, Xiaolin | Fernandes de Souza, Marcella | Mench, Michel, J | Li, Haichao | Ok, Yong Sik | Tack, Filip M.G. | Meers, Erik | Universiteit Gent = Ghent University = Université de Gand (UGENT) | Biodiversité, Gènes & Communautés (BioGeCo) ; Université de Bordeaux (UB)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Korea Polytechnic University (KPU)
International audience | Copper (Cu), as an essential element, is added to animal feed to stimulate growth and prevent disease. The forage crop alfalfa (Medicago sativa L.) produced during Cu phytoextraction may be considered a biofortified crop to substitute the Cu feed additives for livestock production, beneficially alleviating Cu contamination in soils and reducing its input into agriculture systems. To assess this, alfalfa was grown in three similar soils with different Cu levels, i.e., 11, 439 and 779 mg kg−1 for uncontaminated soil (A), moderately Cu-contaminated soil (B) and highly Cu-contaminated soil (C), respectively. EDDS (Ethylenediamine-N,N′-disuccinic acid) was applied to the soils seven days before the first cutting at four rates (0, 0.5, 2 and 5 mmol kg−1) to enhance bioavailable Cu uptake. Alfalfa grew well in soils A and B but not in the highly Cu-contaminated soil. After applying EDDS, a significant biomass reduction of the first cutting shoot was only observed with 5 mmol kg−1 EDDS in the highly Cu-contaminated soil, with a 45% (P < 0.05) decrease when compared to the control. Alfalfa grown in the three soils gradually wilted after the first cutting with 5 mmol kg−1 EDDS, and Cu concentrations in the first cutting shoot were augmented strongly, by 250% (P < 0.05), 3500% (P < 0.05) and 6700% (P < 0.05) compared to the controls, respectively. Cu concentrations in alfalfa shoots were found to be higher in this study than in some fodder plants and further augmented in soils with higher Cu levels and with EDDS application. These findings suggest that alfalfa grown on clean soils or soils with up to 450 mg Cu kg−1 (with appropriate EDDS dosages) has the potential to be considered as a partial Cu supplementation for livestock. This research laid the foundation for the integration between Cu-phytoextraction and Cu-biofortification for livestock.
Показать больше [+] Меньше [-]Study on the remediation of tetracycline antibiotics and roxarsone contaminated soil Полный текст
2021
Zhan, Lu | Xia, Zhiwen | Hsu, Chen-Min | Xie, Bing
Antibiotics are commonly used in livestock and poultry breeding along with organic arsenic. Through long-term accumulation, they can enter into the surrounding soil through various pathways and contaminate the soil. In this paper, tetracycline antibiotics (TCs) and roxarsone (ROX) contaminated soil were used as the representatives of the two kinds of veterinary drugs contaminated soil, respectively, to study the thermal desorption behavior and arsenic stabilization process. Different parameters like heating temperatures, heat duration, stabilizer type and dosage were optimized for effective removal of TCs and ROX. Furthermore, TCs and ROX removal path and ROX stabilization mechanism were explored. Results of the study showed that over 98% of tetracycline antibiotics and roxarsone were effectively removed at 300 °C for 60 min. The heat treatment process of TCs contaminated soil was controlled by the first-order kinetics. Based on the detection of degradation products and thermogravimetric analysis, the possible thermal degradation path of TCs and ROX was proposed. Addition of FeSO₄.7H₂O (10% by weight) as stabilizer during the heat treatment process yielded 96.7% stabilization rate. Through the analysis of arsenic fractions, valence and the characterization of soil samples collected after the heat treatment, mechanism of arsenic stabilization in ROX was explored. The results show that thermal treatment combined with chemical stabilization technology can not only degrade TCs and ROX efficiently and completely, but also convert organic arsenic into inorganic state, which is conducive to better stabilization, and finally achieve effective and safe remediation of this kind of contaminated soil.
Показать больше [+] Меньше [-]Agricultural nitrogen and phosphorus balances of Korea and Japan: Highest nutrient surplus among OECD member countries Полный текст
2021
Im, Chi-yŏn | Islam Bhuiyan, Mohammad Saiful | Lee, Seul Bi | Lee, Jeong Gu | Kim, Pil Joo
Excessive nutrient balance is a very crucial issue for environmental hazards. The constant addition of high-amounts of nutrient sources in agricultural production generates negative environmental conditions in Korea and Japan yet to be resolved. Therefore, it is obligatory to comprehend the nutrient (nitrogen (N) and phosphorus (P)) balance that is assessed by the difference between nutrient input and output in the soil surface in Korea and Japan. Among 34 Economic Co-operation and Development (OECD) countries, Korea and Japan had the highest N and P balances and thus both countries are primarily responsible for severe environmental pollution via nutrient release. The cultivable land area in both countries has constantly decreased during 1990–2017 at approximately 20 and 15% in Korea and Japan, respectively. Even N and P use efficiency sharply decreased with increasing N and P balance in both targeted countries. Japanese P balance, Korean N and P balances were decreased after the mid-1990s whereas, Japanese N balance almost unchanged for the last 28 years. Unlike chemical fertilizer input, Korean manure input level significantly increased from 78 kg N ha⁻¹ in 1990 to 157 kg N ha⁻¹ in 2017. Japanese manure input level was higher than that of chemical fertilizer without any big change for the last 28 years. The lion share of high N and P balance in both countries could generate from manure inputs, therefore, the number of livestock and their produced debris need to be used with more cautious for the reduction of national N and P surpluses at a benchmark level. These findings ensure to make a more environment friendly policy that can further reduce nutrient balance as well as improve soil health.
Показать больше [+] Меньше [-]Model-based analysis of phosphorus flows in the food chain at county level in China and options for reducing the losses towards green development Полный текст
2021
Zhou, Jichen | Jiao, Xiaoqiang | Ma, Lin | de Vries, Wim | Zhang, Fusuo | Shen, Jianbo
Insight in the phosphorus (P) flows and P balances in the food chain is largely unknown at county scale in China, being the most appropriate spatial unit for nutrient management advice. Here, we examined changes in P flows in the food chain in a typical agricultural county (Quzhou) during 1980–2017, using substance flow analyses. Our results show that external P inputs to the county by feed import and fertilizer were 7 times greater in 2017 than in 1980, resulting in a 7-fold increase in P losses to the environment in the last 3 decades, with the biggest source being animal production. Phosphorus use efficiency decreased from 51% to 30% in crop production (PUEc) and from 32% to 11% in the whole food chain (PUEf), but increased from 4% to 7% in animal production (PUEa). A strong reduction in P inputs and thus increase in PUE can be achieved by balanced P fertilization, which is appropriate for Quzhou considering a current average adequate soil P status. Fertilizer P use can be reduced from 7276 tons yr⁻¹ to 1765 tons yr⁻¹ to equal P removal by crops. This change would increase P use efficiency for crops from 30% to 86% but it has a negligible effect on P losses to landfills and water bodies. Increasing the recycling of manure P from the current 43%–95% would reduce fertilizer P use by 17% and reduce P losses by 47%. A combination of reduced fertilizer P use and increased recycling of manure P would save fertilizer P by 93%, reduce P accumulation by 100% and P loss by 49%. The results indicate that increasing manure-recycling and decreasing fertilizer-application are key to achieving sustainable P use in the food chain, which can be achieved through coupling crop-livestock systems and crop-based nutrient management.
Показать больше [+] Меньше [-]Current trends and possibilities for exploitation of Grape pomace as a potential source for value addition Полный текст
2021
Chowdhary, Pankaj | Gupta, Abhishek | Gnansounou, Edgard | Pandey, Ashok | Chaturvedi, Preeti
Grape pomace (GP) is a low-value by-product that contains a significant amount of high value-added products. The huge amount of non-edible residues of GP wastes (seeds, skins, leaves and, stems) produced by wine industries causes’ environmental pollution, management issues as well as economic loss. Studies over the past 15–20 years revealed that GP could serve as a potential source for valuable bioactive compounds like antioxidants, bioactive, nutraceuticals, single-cell protein, and volatile organic compounds with an increasing scientific interest in their beneficial effects on human and animal health. However, the selection of appropriate techniques for the extraction of these compounds without compromising the stability of the extracted products is still a challenging task for the researcher. Based on the current scenario, the review mainly summarizes the novel applications of winery wastes in many sectors such as agriculture, pharmaceuticals, cosmetics, livestock fields, and also the bio-energy recovery system. We also summarize the existing information/knowledge on several green technologies for the recovery of value-added by-products. For the promotion of many emerging technologies, the entrepreneur should be aware of the opportunities/techniques for the development of high-quality value-added products. Thus, this review presents systematic information on value-added by-products that are used for societal benefits concerning the potential for human health and a sustainable environment.
Показать больше [+] Меньше [-]Anthropogenic emission inventory of multiple air pollutants and their spatiotemporal variations in 2017 for the Shandong Province, China Полный текст
2021
Zhou, Mimi | Jiang, Wei | Gao, Weidong | Gao, Xiaomei | Ma, Mingchun | Ma, Xiao
Shandong is the most populous and highly industrialized province in eastern China, and the resultant poor air quality is a cause for widespread concern. This study combines bottom–up and top–down approaches to develop a high-resolution anthropogenic emission inventory of air pollutants for 2017. The inventory was developed based on updated emission factors and detailed activity data. The emissions of sulfur dioxide (SO₂), nitrogen oxides (NOₓ), particulate matter with aerodynamic diameters smaller than 2.5 and 10 μm (PM₂.₅ and PM₁₀, respectively), carbon monoxide (CO), volatile organic compounds (VOCs), and ammonia (NH₃) were estimated to be 1387.8, 2488.6, 5281.7, 3193.0, 9250.7, 2254.7, and 1210.6 kt, respectively. Power plants were the largest contributors of SO₂ and NOₓ emissions accounting for 43.7% and 41.9% of the total emissions, respectively. CO emissions mainly originated from industrial processes (40.1%), mobile sources (24.8%), and fossil fuel burning (21.2%). The major sources of PM₁₀ and PM₂.₅ emissions were industrial processes and fugitive dust, contributing 83.0% and 86.9% of their total emissions, respectively. Industrial processes (60.0%) contributed the largest VOC emissions, followed by mobile sources (16.8%) and solvent use (14.5%). Livestock and N-fertilizers were major emitters of NH₃, accounting for 69.9% and 21.2% of the total emissions, respectively. Emissions were spatially allocated to grid cells with a resolution of 0.05 ° × 0.05 ° based on spatial surrogates, using Geographic Information System (GIS). Heavy pollutant emissions were mainly concentrated in the central and eastern areas of Shandong, while high NH₃–emissions occurred in the western region. Most pollutant emissions from industrial sectors occurred in June and July, while low emissions were recorded between January and February. Range uncertainties in emission inventory were quantified using Monte Carlo simulations. Our inventory provides effective information to understand local pollutant emission characteristics, perform air quality simulations, and formulate pollution control measures.
Показать больше [+] Меньше [-]Evaluation of wetland substrates for veterinary antibiotics pollution control in lab-scale systems Полный текст
2021
Liu, Lin | Li, Jie | Xin, Yu | Huang, Xu | Liu, Chaoxiang
The behaviors of typical veterinary antibiotics (oxytetracycline, ciprofloxacin and sulfamethazine) and 75 types of corresponding antibiotic resistant genes (ARGs) in four substrate systems (zeolite, gravel, red brick, and oyster shell) were investigated in this study. The results indicated that during treating synthetic livestock wastewater with individual antibiotic influent concentration of 100 μg/L, the effluent contained oxytetracycline and ciprofloxacin concentrations of 0.7–1.5 μg/L and 1.0–1.9 μg/L, respectively, in the zeolite and red brick systems, which were significantly lower than those of the other substrate systems (4.6–14.5 μg/L). Statistical correlation analyses indicated that the difference regarding oxytetracycline and ciprofloxacin removal among the four substrates was determined by their adsorption capacity which was controlled by the chemisorption mechanism. The average removal efficiency of sulfamethazine in the gravel system (48%) was higher than that of the other substrate systems (34–45%), and biodegradation may alter the sulfamethazine performance because of its co-metabolism process. Although tetG, floR, sul1, and qacEΔ1 were the dominant ARGs in all substrate systems (8.74 × 10⁻²-6.34 × 10⁻¹), there was difference in the total ARG enrichment levels among the four substrates. Oyster shell exhibited the lowest total relative abundance (1.56 × 10⁰) compared to that of the other substrates (1.82 × 10⁰–2.27 × 10⁰), and the ARG total relative abundance exhibited significant negative and positive correlations with the substrate pH and system bacterial diversity (P < 0.05), respectively. In summary, this study indicated that due to the difference of adsorption capacity and residual abundant nutrient in wastewater, the wetland substrate selection can affect the removal efficiency of veterinary antibiotics, and antibiotics may not be the determining factor of ARG enrichment in the substrate system.
Показать больше [+] Меньше [-]Estimation of nitrate pollution sources and transformations in groundwater of an intensive livestock-agricultural area (Comarca Lagunera), combining major ions, stable isotopes and MixSIAR model Полный текст
2021
Torres Martínez, Juan Antonio | Mora, Abrahan | Mahlknecht, Jürgen | Daesslé, Luis W. | Cervantes-Avilés, Pabel A. | Ledesma-Ruiz, Rogelio
The identification of nitrate (NO₃⁻) sources and biogeochemical transformations is critical for understanding the different nitrogen (N) pathways, and thus, for controlling diffuse pollution in groundwater affected by livestock and agricultural activities. This study combines chemical data, including environmental isotopes (δ²HH₂O, δ¹⁸OH₂O, δ¹⁵NNO₃, and δ¹⁸ONO₃), with land use/land cover data and a Bayesian isotope mixing model, with the aim of reducing the uncertainty when estimating the contributions of different pollution sources. Sampling was taken from 53 groundwater sites in Comarca Lagunera, northern Mexico, during 2018. The results revealed that the NO₃⁻ (as N) concentration ranged from 0.01 to 109 mg/L, with more than 32% of the sites exceeding the safe limit for drinking water quality established by the World Health Organization (10 mg/L). Moreover, according to the groundwater flow path, different biogeochemical transformations were observed throughout the study area: microbial nitrification was dominant in the groundwater recharge areas with elevated NO₃⁻ concentrations; in the transition zones a mixing of different transformations, such as nitrification, denitrification, and/or volatilization, were identified, associated to moderate NO₃⁻ concentrations; whereas in the discharge area the main process affecting NO₃⁻ concentrations was denitrification, resulting in low NO₃⁻ concentrations. The results of the MixSIAR isotope mixing model revealed that the application of manure from concentrated animal-feeding operations (∼48%) and urban sewage (∼43%) were the primary contributors of NO₃⁻ pollution, whereas synthetic fertilizers (∼5%), soil organic nitrogen (∼4%), and atmospheric deposition played a less important role. Finally, an estimation of an uncertainty index (UI90) of the isotope mixing results indicated that the uncertainties associated with atmospheric deposition and NO₃⁻−fertilizers were the lowest (0.05 and 0.07, respectively), while those associated with manure and sewage were the highest (0.24 and 0.20, respectively).
Показать больше [+] Меньше [-]Land use associated with Cryptosporidium sp. and Giardia sp.in surface water supply in the state of São Paulo, Brazil Полный текст
2020
Breternitz, Bruna Suellen | Barbosa da Veiga, Denise Piccirillo | Pepe Razzolini, Maria Tereza | Nardocci, Adelaide Cássia
Land use/Land cover (LULC) associated with Cryptosporidium sp. and Giardia sp. quantification and distribution can provide identification of the environmental circulation patterns of these parasites. The aim of this research was to relate the occurrence and circulation of these parasites to the LULC watershed with poor sanitation infrastructure and livestock as important economic activity. The study involved 11 municipalities in the state of São Paulo, located in southeastern Brazil. Sampling was carried out at the catchment sites of each water supply on a monthly basis, starting in December 2014 and lasting until November 2015, totalizing 128 samples. Protozoans were quantified according to the 1623.1 US. EPA Method. For watershed delimitation, the hydrographic network was extracted from the hydrology tool of ArcGIS 10.1. The frequency of occurrence of these pathogens and the high concentrations were evidenced in the municipality with the largest urban area (16.2%) and intense livestock activity (39%) near the catchment site. The municipality that showed the lowest frequency of occurrence presented the smallest urban area (0.87%) and absence of livestock activity near the catchment site. The high concentration of pathogens suggests a correlation between the impact on water supply networks and river basin degradation caused by urban activity and livestock.
Показать больше [+] Меньше [-]