Уточнить поиск
Результаты 1-10 из 57
Bioremediation of a saline-alkali soil polluted with Zn using ryegrass associated with Fusariumincarnatum Полный текст
2022
Zhang, Jinxuan | Fan, Xiaodan | Wang, Xueqi | Tang, Yinbing | Zhang, Hao | Yuan, Zhengtong | Zhou, Jiaying | Han, Yibo | Li, Teng
Biotechnological strategies have become effective in the remediation of polluted soils as they are cost-effective and do not present a risk of secondary pollution. However, using a single bioremediation technique (microorganism or plant) is not suitable for achieving a high remediation rate of polluted saline-alkali soils with heavy metals. Therefore, the present study aims to assess the effects and mechanisms of combined ryegrass and Fusarium incarnatum on the zinc (Zn)-polluted saline-alkali soil over 45 days. According to the obtained results, the combined Fusarium incarnatum-ryegrass showed the highest remediation rate of 49.35% after 45 days, resulting in a significantly lower soil Zn concentration than that observed in the control group. In addition, the inoculation of Fusarium incarnatum showed a positive effect on the soil EPS secretion. The soil protein contents ranged from 0.035 to 0.055 mg/kg, while the soil polysaccharide contents increased from 0.25 to 0.61 mg/g. The soil microbial flora and ryegrass showed resistance to saline and alkaline stresses through the secretion of extracellular polysaccharides. The three-dimensional fluorescence spectrum (3D-EEM) confirmed that EPS in the soil was mainly a fulvic acid-like substance. The fluorescein diacetate (FDA) hydrolase activity in the saline-alkali soil was first increased due to the effect of Fusarium incarnatum and then decreased to a minimum value of 96 μg/(g·h). In addition, the Fusarium incarnatum inoculation improved the diversity and richness of soil fungi. Although the Fusarium incarnatum inoculation had a slight effect on the germination of ryegrass, it increased the biomass and enrichment coefficient. The results revealed a translocation factor (TF) value of 0.316 at 45 days after ryegrass sowing, showing significant enrichment of the soil Zn heavy metal zinc in the ryegrass roots.
Показать больше [+] Меньше [-]Selenium improved the combined remediation efficiency of Pseudomonas aeruginosa and ryegrass on cadmium-nonylphenol co-contaminated soil Полный текст
2021
Ni, Gang | Shi, Guangyu | Hu, Chengxiao | Wang, Xu | Nie, Min | Cai, Miaomiao | Cheng, Qin | Zhao, Xiaohu
Most chemical plant wastewater contains both organic and inorganic pollutants, which are easy to diffuse along with surface runoff. The combined pollution of nonylphenol (NP) and cadmium (Cd) in soil is a serious problem that has not attracted enough attention. Based on the effects of selenium (Se) and Pseudomonas aeruginosa (P. aeruginosa) on plant and soil microbial communities, we speculated that the application of Se and P. aeruginosa in soil could improve the phytoremediation efficiency of ryegrass on contaminated soil. In this study, pot experiments with Cd and NP co-contaminated soil were conducted, and the results showed that application of P. aeruinosa alone could improve the removal rates of NP and Cd by ryegrass, and the supplementary of Se further enhanced the effect of micro-phyto remediation, with the highest removal rates of NP and Cd were 79.6% and 49.4%, respectively. The application of P. aeruginosa plus Se reduced the adsorption of Cd and NP through C–O and Si–O–Fe of the soil, changed the enzyme activity, and also affected the changing trend of the microbial community in soil. Pseudomonas, Sphingomonadales, Nitrospira, and other beneficial bacteria were enriched after a 60-day period with P. aeruginosa and Se treatment, thus promoting the removal of NP and Cd. In light of the above results, we suggest that P. aeruginosa application can efficiently facilitate the phytoremediation of ryegrass on Cd-NP co-contaminated soil, and Se supplementation in soil showed the synergistic effect on the remediation.
Показать больше [+] Меньше [-]Vertical migration of microplastics along soil profile under different crop root systems Полный текст
2021
Li, Haixiao | Lu, Xueqiang | Wang, Shiyu | Zheng, Boyang | Xu, Yan
Microplastics are highly accumulated in soils and supposed to migrate vertically due to water infiltration, fauna activities, and root growth. In this study, the vertical migration of microplastics along soil profile under three crop roots (corn, soybean, and ryegrass) was analyzed by a laboratory-scale incubation experiment. When microplastics were initially distributed in the surface layer, crop roots showed little effects on the vertical migration of microplastics. But in terms of homogenous microplastic distribution along soil profile, corn roots could contribute to the upward movement of microplastics in the middle layers (7–12 cm). It could be related to more pores and fissures created by primary and secondary corn roots and buoyancy effects once the pores and fissures were filled with water. Additionally, a significant positive correlation between microplastic numbers and tertiary roots of ryegrass has been observed and indicated the microplastic retention ability of fine crop roots. According to the results, in contrast to the downward microplastic migration caused by water infiltration and soil fauna activities, crop roots tended to move microplastics upwards or maintain them in soil layers.
Показать больше [+] Меньше [-]Speciation, mobilization, and bioaccessibility of arsenic in geogenic soil profile from Hong Kong Полный текст
2018
Cui, Jin-li | Zhao, Yan-ping | Li, Jiang-shan | Beiyuan, Jing-zi | Tsang, Daniel C.W. | Poon, C. S. (Chi-sun) | Chan, Ting-shan | Wang, Wen-xiong | Li, Xiang-Dong
The behaviour of arsenic (As) from geogenic soil exposed to aerobic conditions is critical to predict the impact of As on the environment, which processes remain unresolved. The current study examined the depth profile of As in geologically derived subsoil cores from Hong Kong and investigated the mobilization, plant availability, and bioaccessibility of As in As-contaminated soil at different depths (0–45.8 m). Results indicated significant heterogeneity, with high levels of As in three layers of soil reaching up to 505 mg/kg at a depth of 5 m, 404 mg/kg at a depth of 15 m, and 1510 mg/kg at a depth of 27–32 m. Arsenic in porewater samples was <11.5 μg/L in the study site. X-ray absorption spectroscopy (XAS) indicated that main As species in soil was arsenate (As(V)), as adsorbed fraction to Fe oxides (41–69% on goethite and 0–8% on ferrihydrite) or the mineral form scorodite (30–57%). Sequential extraction procedure demonstrated that 0.5 ± 0.4% of As was exchangeable. Aerobic incubation experiments exhibited that a very small amount (0.14–0.48 mg/kg) of As was desorbed from the soil because of the stable As(V) complex structure on abundant Fe oxides (mainly goethite), where indigenous microbes partly (59 ± 18%) contributed to the release of As comparing with the sterilized control. Furthermore, no As toxicity in the soil was observed with the growth of ryegrass. The bioaccessibility of As was <27% in the surface soil using simplified bioaccessibility extraction test. Our systematic evaluation indicated that As in the geogenic soil profile from Hong Kong is relatively stable exposing to aerobic environment. Nevertheless, children and workers should avoid incidental contact with excavated soil, because high concentration of As was present in the digestive solution (<0.1–268 μg/L).
Показать больше [+] Меньше [-]Decline in atmospheric sulphur deposition and changes in climate are the major drivers of long-term change in grassland plant communities in Scotland Полный текст
2018
Mitchell, R. J. (Ruth J.) | Hewison, Richard L. | Fielding, Debbie A. | Fisher, Julia M. | Gilbert, Diana J. | Hurskainen, Sonja | Pakeman, R. J. (Robin J.) | Potts, Jacqueline M. | Riach, David
The predicted long lag time between a decrease in atmospheric deposition and a measured response in vegetation has generally excluded the investigation of vegetation recovery from the impacts of atmospheric deposition. However, policy-makers require such evidence to assess whether policy decisions to reduce emissions will have a positive impact on habitats. Here we have shown that 40 years after the peak of SOₓ emissions, decreases in SOₓ are related to significant changes in species richness and cover in Scottish Calcareous, Mestrophic, Nardus and Wet grasslands. Using a survey of vegetation plots across Scotland, first carried out between 1958 and 1987 and resurveyed between 2012 and 2014, we test whether temporal changes in species richness and cover of bryophytes, Cyperaceae, forbs, Poaceae, and Juncaceae can be explained by changes in sulphur and nitrogen deposition, climate and/or grazing intensity, and whether these patterns differ between six grassland habitats: Acid, Calcareous, Lolium, Nardus, Mesotrophic and Wet grasslands. The results indicate that Calcareous, Mesotrophic, Nardus and Wet grasslands in Scotland are starting to recover from the UK peak of SOₓ deposition in the 1970's. A decline in the cover of grasses, an increase in cover of bryophytes and forbs and the development of a more diverse sward (a reversal of the impacts of increased SOₓ) was related to decreased SOₓ deposition. However there was no evidence of a recovery from SOₓ deposition in the Acid or Lolium grasslands. Despite a decline in NOₓ deposition between the two surveys we found no evidence of a reversal of the impacts of increased N deposition. The climate also changed significantly between the two surveys, becoming warmer and wetter. This change in climate was related to significant changes in both the cover and species richness of bryophytes, Cyperaceae, forbs, Poaceae and Juncaceae but the changes differed between habitats.
Показать больше [+] Меньше [-]Characterisation of the phenanthrene degradation-related genes and degrading ability of a newly isolated copper-tolerant bacterium Полный текст
2017
Song, Mengke | Yang, Ying | Jiang, Longfei | Hong, Qing | Zhang, Dayi | Shen, Zhenguo | Yin, Hua | Luo, Chunling
A copper-tolerant phenanthrene (PHE)-degrading bacterium, strain Sphingobium sp. PHE-1, was newly isolated from the activated sludge in a wastewater treatment plant. Two key genes, ahdA1b-1 encoding polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase (PAH-RHDɑ) and xyLE encoding catechol-2,3-dioxygenase (C23O), involved in the PHE metabolism by strain PHE-1 were identified. The PAH-RHD gene cluster showed 96% identity with the same cluster of Sphingomonas sp. P2. Our results indicated the induced transcription of xylE and ahdA1b-1 genes by PHE, simultaneously promoted by Cu(II). For the first time, high concentration of Cu(II) is found to encourage the expression of PAH-RHDɑ and C23O genes during PHE degradation. Applying Sphingomonas PHE-1 in PHE-contaminated soils for bioaugmentation, the abundance of xylE gene was increased by the planting of ryegrass and the presence of Cu(II), which, in turn, benefited ryegrass growth. The best performance of PHE degradation and the highest abundance of xylE genes occurred in PHE-copper co-contaminated soils planted with ryegrass.
Показать больше [+] Меньше [-]Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil Полный текст
2016
Zhang, Guixiang | Guo, Xiaofang | Zhao, Zhihua | He, Qiusheng | Wang, Shuifeng | Zhu, Yuen | Yan, Yulong | Liu, Xitao | Sun, Ke | Zhao, Ye | Qian, Tianwei
A pot experiment was conducted to investigate the effects of biochars on the availability of heavy metals (Cd, Cu, Mn, Ni, Pb, and Zn) to ryegrass in an alkaline contaminated soil. Biochars only slightly decreased or even increased the availability of heavy metals assesses by chemical extractant (a mixture of 0.05 mol L−1 ethylenediaminetetraacetic acid disodium, 0.01 mol L−1 CaCl2, and 0.1 mol L−1 triethanolamine). The significantly positive correlation between most chemical-extractable heavy metals and the ash content in biochars indicated the positive role of ash in this extraction. Biochars significantly reduced the plant uptake of heavy metals, excluding Mn. The absence of a positive correlation between the chemical-extractable heavy metals and the plant uptake counterparts (except for Mn) indicates that chemical extractability is probably not a reliable indicator to predict the phytoavailability of most heavy metals in alkaline soils treated with biochars. The obviously negative correlation between the plant uptake of heavy metals (except for Mn) and the (O + N)/C and H/C indicates that biochars with more polar groups, which were produced at lower temperatures, had higher efficiency for reducing the phytoavailability of heavy metals. The significantly negative correlations between the plant uptake of Mn and ryegrass biomass indicated the “dilution effect” caused by the improvement of biomass. These observations will be helpful for designing biochars as soil amendments to reduce the availability of heavy metals to plants in soils, especially in alkaline soils.
Показать больше [+] Меньше [-]Amending greenroof soil with biochar to affect runoff water quantity and quality Полный текст
2011
Beck, Deborah A. | Johnson, Gwynn R. | Spolek, Graig A.
Numbers of greenroofs in urban areas continue to grow internationally; so designing greenroof soil to reduce the amount of nutrients in the stormwater runoff from these roofs is becoming essential. This study evaluated changes in extensive greenroof water discharge quality and quantity after adding biochar, a soil amendment promoted for its ability to retain nutrients in soils and increase soil fertility. Prototype greenroof trays with and without biochar were planted with sedum or ryegrass, with barren soil trays used as controls. The greenroof trays were subjected to two sequential 7.4cm/h rainfall events using a rain simulator. Runoff from the rain events was collected and evaluated. Trays containing 7% biochar showed increased water retention and significant decreases in discharge of total nitrogen, total phosphorus, nitrate, phosphate, and organic carbon. The addition of biochar to greenroof soil improves both runoff water quality and retention.
Показать больше [+] Меньше [-]Nitrogen of EDDS enhanced removal of potentially toxic elements and attenuated their oxidative stress in a phytoextraction process Полный текст
2021
Beiyuan, Jingzi | Fang, Linchuan | Chen, Hansong | Li, Mengdi | Liu, Dongdong | Wang, Yunqiang
(S,S)-ethylenediaminedisuccinic acid (EDDS) has a strong capacity to mobilize potentially toxic elements (PTEs) in phytoextraction. It can release NH₄⁺-N via biodegradation, which can enhance N supply to soil thereafter promote plant growth and plant resistance to PTEs. However, the advanced feature of released N in the EDDS-enhanced phytoextraction remains unclear. In the current study, the effects of N supply released from EDDS on ryegrass phytoextraction and plant resistance to PTEs were investigated in detail by a comparison with urea. Our results supported that the addition of both EDDS and urea increased N concentration in soil solution, yet EDDS needed more time to release available N for plant uptake and transported more N from root to shoot. Additionally, EDDS significantly increased the concentration of all targeted PTEs, i.e. Cu, Zn, Cd, and Pb, in the soil solution, which results in higher levels of their occurrence in plant biomass compared with urea. By contrast, the supply of N slightly enhanced the ryegrass uptake of micro-nutrients, i.e. Cu and Zn, yet it caused negligible effects on nonessential elements, i.e. Cd and Pb. The mobilized PTEs by EDDS lead to elevated oxidative stress because higher levels of malondialdehyde and O₂•⁻ were observed. The supply of N attenuated oxidative stress caused by O₂•⁻ and H₂O₂, which was associated with enhanced activities of superoxide dismutase and peroxidase. Our results advanced the understanding of the exogenous N supply and metal resistance mechanisms in the EDDS-enhanced phytoextraction. This study also highlighted that EDDS can serve as a N source to ease N-deficient problems in PTEs-contaminated soils.
Показать больше [+] Меньше [-]Effect of soil amendments on molybdenum availability in mine affected agricultural soils Полный текст
2021
Wang, Xiaoqing | Brunetti, Gianluca | Tian, Wenjie | Owens, Gary | Qu, Yang | Jin, Chaoxi | Lombi, Enzo
Molybdenum (Mo) contamination of agricultural soils around Mo-mining areas is of emerging environmental concern. This study evaluated potential practical techniques for chemical immobilization of three Mo contaminated agricultural soils via application of up to six amendments from four different types of materials including biosolids, biochar supported nanoscale zero-valent iron (BC-nZVI), drinking water treatment residues (WTR) and ferrous minerals (magnetite and ferrihydrite). The efficacy of the different amendments on soil Mo bioaccessibility and bioavailability was evaluated by monitoring Mo uptake in both monocotyledon (ryegrass) and dicotyledon (alfalfa) plants, soil extractable Mo, and Mo bioavailability as measured by Diffusive Gradient in Thin Films (DGT®). All amendments exhibited no immobilization effect and increased Mo extractability in the severely contaminated soil (264 mg Mo kg⁻¹). In contrast, in lightly and moderately contaminated soils (22 and 98 mg Mo kg⁻¹), biosolids, WTR and magnetite all reduced soil extractable Mo and decreased Mo uptake in both alfalfa and ryegrass shoots relative to controls (CK). Moreover, DGT showed that during incubation experiments while biosolids amendments increased Mo bioavailability from 115 to 378% compared to the CK treatments, all other amendments decreased Mo bioavailability insignificantly.
Показать больше [+] Меньше [-]