Уточнить поиск
Результаты 1-10 из 30
Exploring common factors influencing PM2.5 and O3 concentrations in the Pearl River Delta: Tradeoffs and synergies Полный текст
2021
Wu, Jiansheng | Wang, Yuan | Liang, Jingtian | Yao, Fei
Particulate matter with an aerodynamic equivalent dimeter less than 2.5 μm (PM₂.₅) and ozone (O₃) are major air pollutants, with coupled and complex relationships. The control of both PM₂.₅ and O₃ pollution requires the identification of their common influencing factors, which has rarely been attempted. In this study, land use regression (LUR) models based on the least absolute shrinkage and selection operator were developed to estimate PM₂.₅ and O₃ concentrations in China's Pearl River Delta region during 2019. The common factors in the tradeoffs between the two air pollutants and their synergistic effects were analyzed. The model inputs included spatial coordinates, remote sensing observations, meteorological conditions, population density, road density, land cover, and landscape metrics. The LUR models performed well, capturing 54–89% and 42–83% of the variations in annual and seasonal PM₂.₅ and O₃ concentrations, respectively, as shown by the 10-fold cross validation. The overlap of variables between the PM₂.₅ and O₃ models indicated that longitude, aerosol optical depth, O₃ column number density, tropospheric NO₂ column number density, relative humidity, sunshine duration, population density, the percentage cover of forest, grass, impervious surfaces, and bare land, and perimeter-area fractal dimension had opposing effects on PM₂.₅ and O₃. The tropospheric formaldehyde column number density, wind speed, road density, and area-weighted mean fractal dimension index had complementary effects on PM₂.₅ and O₃ concentrations. This study has improved our understanding of the tradeoff and synergistic factors involved in PM₂.₅ and O₃ pollution, and the results can be used to develop joint control policies for both pollutants.
Показать больше [+] Меньше [-]Are unintentionally produced polychlorinated biphenyls the main source of polychlorinated biphenyl occurrence in soils? Полный текст
2018
Song, Shuai | Xue, Jianfang | Lü, Yonglong | Zhang, Hong | Wang, Chenchen | Cao, Xianghui | Li, Qifeng
The production of polychlorinated biphenyls (PCBs) has been banned globally for decades, but PCB concentrations in environmental media remain relatively high, especially in urban areas. Emissions estimates, studies of soil gradients between urban and rural areas, and quantitative identification of regional sources of PCBs in soils are necessary for understanding the environmental behavior of PCBs. In this study, regional PCB emissions were estimated at a resolution of 10 km × 10 km, and the spatial distribution of soil PCBs from urban to rural areas was studied along the Bohai and Yellow Sea regions. Compared with rural areas, mean PCB concentrations in urban soils (20.7 ng/g) were found to be higher, and concentrations decreased with distance from the city. Across both latitude and longitude directions, high PCB emissions in urban areas matched the distribution of total PCB concentrations in soils. The concentrations of the pollutants PCB28, PCB52, PCB101, PCB118, PCB138, PCB153, and PCB180 in soils originated from 5-year emissions, and accounted for 97%, 95%, 84%, 81%, 58%, 57%, and 27% of the total emissions, respectively. Unintentionally produced PCB (UP-PCB) emissions, which are mainly derived from cement (42%), pig iron (37%), crude steel (18%), and rolled steel (3%) industries, are the major contributors to PCBs in soils. Further identification of the sources and fates of PCBs requires a combination of field, laboratory, and modeling efforts.
Показать больше [+] Меньше [-]Using foliar and forest floor mercury concentrations to assess spatial patterns of mercury deposition Полный текст
2015
Blackwell, Bradley D. | Driscoll, Charles T.
We evaluated spatial patterns of mercury (Hg) deposition through analysis of foliage and forest floor samples from 45 sites across Adirondack Park, NY. Species-specific differences in foliar Hg were evident with the lowest concentrations found in first-year conifer needles and highest concentrations found in black cherry (Prunus serotina). For foliage and forest floor samples, latitude and longitude were negatively correlated with Hg concentrations, likely because of proximity to emission sources, while elevation was positively correlated with Hg concentrations. Elemental analysis showed moderately strong, positive correlations between Hg and nitrogen concentrations. The spatial pattern of Hg deposition across the Adirondacks is similar to patterns of other contaminants that originate largely from combustion sources such as nitrogen and sulfur. The results of this study suggest foliage can be used to assess spatial patterns of Hg deposition in small regions or areas of varied topography where current Hg deposition models are too coarse to predict deposition accurately.
Показать больше [+] Меньше [-]Gridded emission inventory of organophosphorus flame retardants in China and inventory validation Полный текст
2021
He, Jian | Wang, Zhanxiang | Zhao, Liuyuan | Ma, Haibo | Huang, Juan | Li, Hongyu | Mao, Xiaoxuan | Huang, Tao | Gao, Hong | Ma, Jianmin
The bioaccumulation and adverse effects of organophosphorus flame retardants (OPFRs) on human health have become a global concern. China produces the largest amount of OPFRs globally and has the highest global market share. However, little is known about its emission level and environmental cycling, thereby causing uncertainties in the assessment of the environmental and health impacts of OPFRs. We developed a gridded annual OPFRs emission inventory at 1/4° longitude by 1/4° latitude resolution over China from 2014 to 2018. The results show that the annual OPFRs emissions increased from approximately 670 tons/yr in 2014 to 1000 tons/yr in 2018 in China. Higher OPFR emissions were identified in Jiangxi, Shandong, Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD), and Pearl River Delta (PRD). In total, 2400 tons of OPFRs were released into the atmosphere during the multi-year period, in which production accounting for 56.6% of total OPFR emissions in China. An atmospheric transport model, the Canadian Model for Environmental Transport of Organochlorine Pesticides (CanMETOP), was employed to verify the gridded emission inventory and elucidate the atmospheric environmental fate of OPFRs. Modeled OPFRs in the air and soil agreed reasonably well with observed data, suggesting that the developed inventory was, to a large extent, reliable. The modeled atmospheric and surface soil concentrations of OPFRs across China ranged from 0 to 119 ng/m³ and 0 to 428 ng/g, respectively. East China is subjected to more intense OPFR contamination than the rest of the country. The results provide a valuable dataset and assessment of OPFRs, which may aid policy-makers and the scientific community in developing emission control strategies and evaluating the health and environmental consequences of OPFRs in China.
Показать больше [+] Меньше [-]Seasonal variation and potential risk assessment of microcystins in the sediments of Lake Taihu, China Полный текст
2020
Xue, Qingju | Steinman, Alan D. | Xie, Liqiang | Yao, Lei | Su, Xiaomei | Cao, Qing | Zhao, Yanyan | Cai, Yongjiu
High concentrations of microcystins (MCs) in sediment pose a serious hazard to aquatic and terrestrial organisms. Hence, we investigated the seasonal variation of dominant MCs (MC-LR, MC-RR and MC-YR) in sediments of Lake Taihu over four seasons for the first time. Sediment MCs varied seasonally (p < 0.01) with concentrations highest in August and lowest in February. The MCs were dominated by MC-LR (61.47%) with the content ranging from 0.02 to 2.37 μg/g dry weight in sediment. The three MC congeners and their proportions were significantly correlated with latitude and longitude. Meiliang Bay in the north had the highest MCs of all sites, while the eastern part of the lake had a high level especially in August. Variation of MC-LR and MC-RR concentrations was significantly correlated (p < 0.05) with water temperature, dissolved total organic carbon, cyanobacteria density, total suspended solid particles, and total organic carbon and total nitrogen in sediment, while MC-YR was negatively correlated (p < 0.01) with nutrients in the water column and heavy metals in sediments. An ecological risk assessment suggested the MCs already pose significant adverse effects on Potamopyrgus antipodarum; although the adverse effects on humans were weak, children were at greater risk than adults.
Показать больше [+] Меньше [-]Solid fuel combustion as a major contributor of polycyclic aromatic hydrocarbons in rural China: Evidence from emission inventory and congener profiles in tree bark Полный текст
2019
Niu, Lili | Zhou, Yuting | Xu, Chao | Zhang, Chunlong | Zhou, Jinghua | Zhang, Xichang | Liu, Weiping
Polycyclic aromatic hydrocarbons (PAHs) remain a focal concern of the air pollution in China. To discriminate the sources of airborne PAHs in Chinese rural regions, a national-scale tree bark sampling campaign and emission inventory estimation were conducted. The concentrations of the sum of 16 U.S. EPA priority PAHs in rural bark ranged from 6.30 to 3803 ng/g, with the dominance of 3- and 4-ring PAHs. Bark residual PAH concentration correlated significantly with emission flux rate, bark lipid content, ambient PM₂.₅, precipitation and sampling location. Based on the information of emission data, bark PAH congener profiles, principal component analysis, diagnostic ratios and compound-specific isotope analysis, solid fuel combustion was identified as the major source and could explain 40.3%–46.4% of bark PAH residues in rural China. The δ¹³C values of most individual PAHs were more negative at sites with lower longitude and latitude, suggesting a greater contribution of biomass combustion to PAH residues. Our results suggest the importance of regulating solid fuel combustion to significantly improve the air quality in China, and bark samples can provide a wealth of information on effectively monitoring and controlling the sources of PAH emission in rural China.
Показать больше [+] Меньше [-]Gridded emission inventory of short-chain chlorinated paraffins and its validation in China Полный текст
2017
Jiang, Wanyanhan | Huang, Tao | Mao, Xiaoxuan | Wang, Li | Zhao, Yuan | Jia, Chenhui | Wang, Yanan | Gao, Hong | Ma, Jianmin
China produces approximately 20%–30% of the total global chlorinated paraffins (CPs). The establishment of a short-chain CP (SCCP) emission inventory is a significant step toward risk assessment and regulation of SCCPs in China and throughout the globe. This study developed a gridded SCCPs emission inventory with a 1/4° longitude by 1/4° latitude resolution from 2008 to 2012 for China, which was based on the total annual CPs emissions for the nation. The total national SCCPs emission during this 5-year period was 5651.5 tons. An additive in metal cutting fluids was a major emission source in China, contributing 2680.2 tons to the total atmospheric emissions of SCCPs from 2008 to 2012, followed by the production of CPs (2281.8 tons), plasticizers (514.3 tons), flame retardants (108.6 tons), and net import (66.6 tons). Most of these emission sources are located along the eastern seaboard of China and southern China. A coupled atmospheric transport model was employed to simulate environmental contamination by SCCPs using the gridded emission inventory of SCCPs from 2008 to 2012 as the model initial conditions. Simulated atmospheric and soil concentrations were compared with field monitoring data to validate the emission inventory. The results showed good consistency between modeled and field sampling data, supporting the reliability and credibility of the gridded SCCPs emission inventory that was developed in the present study.
Показать больше [+] Меньше [-]Longitudinal occurrence of methylmercury in terrestrial ecosystems of the Tibetan Plateau Полный текст
2016
Methylmercury (MeHg), a neurotoxin, is a global concern because of its potential risk to human and ecological health. Elevated mercury (Hg) concentrations were recently reported in the Tibetan Plateau (TP) due to increasing Hg input from distant regions, yet little is known about MeHg production and distribution in the terrestrial ecosystems of the TP. Here, we report longitudinal occurrence of MeHg and the factors regulating net MeHg production in 23 grassland sites from eastern to western TP. The soil MeHg content varied from 0.002 to 0.058 ng g−1, with different distribution patterns between the eastern and western TP. There was a positive correlation between the MeHg concentration and the longitude after 90 °E, which is similar to the distribution patterns of the total mercury (THg), water and organic carbon in this region. Average MeHg concentration in topsoil is generally higher than that in subsoil. Our results show that MeHg concentration in soils of the TP is directly affected by soil water, potential microbial methylators and THg, while indirectly regulated by soil organic carbon through the microbial community and the longitude-dependent precipitation through soil water. Our study suggests that soil water is the most important driver regulating net MeHg production in the grasslands of the TP. These findings have important implications for unraveling the mechanism of net production of MeHg in high-altitude environments.
Показать больше [+] Меньше [-]Parametric retrieval model for estimating aerosol size distribution via the AERONET, LAGOS station Полный текст
2015
Emetere, Moses Eterigho | Akinyemi, Marvel Lola | Akin-Ojo, Omololu
The size characteristics of atmospheric aerosol over the tropical region of Lagos, Southern Nigeria were investigated using two years of continuous spectral aerosol optical depth measurements via the AERONET station for four major bands i.e. blue, green, red and infrared. Lagos lies within the latitude of 6.465°N and longitude of 3.406°E. Few systems of dispersion model was derived upon specified conditions to solve challenges on aerosols size distribution within the Stokes regime. The dispersion model was adopted to derive an aerosol size distribution (ASD) model which is in perfect agreement with existing model. The parametric nature of the formulated ASD model shows the independence of each band to determine the ASD over an area. The turbulence flow of particulates over the area was analyzed using the unified number (Un). A comparative study via the aid of the Davis automatic weather station was carried out on the Reynolds number, Knudsen number and the Unified number. The Reynolds and Unified number were more accurate to describe the atmospheric fields of the location. The aerosols loading trend in January to March (JFM) and August to October (ASO) shows a yearly 15% retention of aerosols in the atmosphere. The effect of the yearly aerosol retention can be seen to partly influence the aerosol loadings between October and February.
Показать больше [+] Меньше [-]Occurrence and fate of perfluoroalkyl substances in marine sediments from the Chinese Bohai Sea, Yellow Sea, and East China Sea Полный текст
2014
Gao, Yan | Fu, Jianjie | Zeng, Lixi | Li, An | Li, Huijuan | Zhu, Nali | Liu, Runzeng | Liu, Aifeng | Wang, Yawei | Jiang, Guibin
In this study, 166 surface sediments and 3 sediment cores from the Bohai Sea (BS), Yellow Sea (YS) and East China Sea (ECS) in China were collected to investigate the spatial and temporal distributions and the transport of PFASs. PFASs concentrations in the surface sediments ranged from below detection limit (<LOD) to 2.78 ng g−1 with an average value of 0.55 ng g−1 on a dry weight basis (dw). A general decreasing trend of PFASs from the coast areas to the open sea was found. Multivariate regression analysis indicated pH and longitude were the major factors influencing surficial distributions of PFASs in the sampling areas (R2 = 0.29, p < 0.01). Total PFASs concentrations in the sediment cores ranged from <LOD to 1.65 ng g−1 dw, with an increasing trend from the lower to the upper layers, corresponding well to the increasing production and usage in China in recent years.
Показать больше [+] Меньше [-]