Уточнить поиск
Результаты 1-10 из 145
Metal stable isotopes in transplanted oysters as a new tool for monitoring anthropogenic metal bioaccumulation in marine environments: The case for copper
2021
Araújo, Daniel F. | Knoery, Joël | Briant, Nicolas | Ponzevera, Emmanuel | Chouvelon, Tiphaine | Auby, Isabelle | Yepez, Santiago | Bruzac, Sandrine | Sireau, Teddy | Pellouin-Grouhel, Anne | Akcha, Farida
Metal release into the environment from anthropogenic activities may endanger ecosystems and human health. However, identifying and quantifying anthropogenic metal bioaccumulation in organisms remain a challenging task. In this work, we assess Cu isotopes in Pacific oysters (C. gigas) as a new tool for monitoring anthropogenic Cu bioaccumulation into marine environments. Arcachon Bay was taken as a natural laboratory due to its increasing contamination by Cu, and its relevance as a prominent shellfish production area. Here, we transplanted 18-month old oysters reared in an oceanic neighbor area into two Arcachon Bay mariculture sites under different exposure levels to continental Cu inputs. At the end of their 12-month long transplantation period, the oysters’ Cu body burdens had increased, and was shifted toward more positive δ⁶⁵Cu values. The gradient of Cu isotope compositions observed for oysters sampling stations was consistent with relative geographic distance and exposure intensities to unknown continental Cu sources. A binary isotope mixing model based on experimental data allowed to estimate the Cu continental fraction bioaccumulated in the transplanted oysters. The positive δ⁶⁵Cu values and high bioaccumulated levels of Cu in transplanted oysters support that continental emissions are dominantly anthropogenic. However, identifying specific pollutant coastal source remained unelucidated mostly due to their broader and overlapping isotope signatures and potential post-depositional Cu isotope fractionation processes. Further investigations on isotope fractionation of Cu-based compounds in an aqueous medium may improve Cu source discrimination. Thus, using Cu as an example, this work combines for the first time a well-known caged bivalve approach with metal stable isotope techniques for monitoring and quantifying the bioaccumulation of anthropogenic metal into marine environments. Also, it states the main challenges to pinpoint specific coastal anthropogenic sources utilizing this approach and provides the perspectives for further studies to overcome them.
Показать больше [+] Меньше [-]Antibiotics in mariculture organisms of different growth stages: Tissue-specific bioaccumulation and influencing factors
2021
Zhang, Xuanrui | Zhang, Jiachao | Han, Qianfan | Wang, Xiaoli | Wang, Shuguang | Yuan, Xianzheng | Zhang, Baiyu | Zhao, Shan
Maricultured organisms are chronically exposed to water containing antibiotics but the bioaccumulative behavior of antibiotics in exposed organisms at different growth stages has received little attention. Here, we investigated the concentrations and tissue-specific bioaccumulation characteristics of 19 antibiotics during three growth stages (youth stage, growth stage, and adult stage) of various organisms (Scophthalmus maximus, Penaeus vannamei, Penaeus japonicus, and Apostichopus japonicus) cultivated in typical marine aquaculture regions, and explored the factors that could affect the bioaccumulation of antibiotics. Tetracyclines (TCs) and fluoroquinolones (FQs) were the dominant antibiotics in all organisms, and the total concentrations of the target antibiotics in fish (S. maximus) were significantly higher than those in shrimp (P. vannamei and P. japonicus) and sea cucumber (A. japonicus) (p < 0.01). The bioaccumulation capacity of a class of statistically significant antibiotics in most samples was strongest during the youth stage and weakest during the adult stage. The antibiotics exhibited higher bioaccumulation capacity in lipid-rich tissues (fish liver and shrimp head) or respiratory organs (fish gill) than muscle. Our results also reveal significant metabolic transformation of enrofloxacin in fish. Different from previous studies, the logarithm bioaccumulation factor (log BAF) was positively correlated with log Dₗᵢₚw in low-biotransformation tissues (fish gill and muscle) rather than lipid-rich tissues (fish liver). Based on the calculated hazard quotients (HQ), doxycycline in fish muscle may pose a distinct risk to human health, which deserves special attention. Overall, these results provide insight into the bioaccumulation patterns of antibiotics during different growth stages and tissues of maricultured organisms.
Показать больше [+] Меньше [-]Coastal zone use influences the spatial distribution of microplastics in Hangzhou Bay, China
2020
Wang, Ting | Hu, Menghong | Song, Lili | Yu, Jun | Liu, Ruijuan | Wang, Shixiu | Wang, Zhifu | Sokolova, Inna M. | Huang, Wei | Wang, Youji
Microplastic pollution in estuarine and coastal environments has recently been characterised in several countries but few researchers have addressed the influence of different forms of coastal zone use on the distribution of microplastic. Here, microplastic particles were sampled in Hangzhou Bay, which is heavily influenced by a range of human activities, and their abundance, size, and polymer type characterised. The abundance of microplastics was 0.14 ± 0.12 items/m³ in water, 84.3 ± 56.6 items/kg dry weight of sediment, and between 0.25 ± 0.14 and 1.4 ± 0.37 items/individual in biota. These results show that Hangzhou Bay has a low level of microplastic contamination compared to other coastal systems in China, although abundance was spatially variable within the bay; relatively higher microplastic abundances were found in the southern area of the bay, which has adjacent industrial and urban land-use zones, while lower abundances were observed in the central and northern bay areas where mariculture, fisheries, and mineral and energy industries are most common. The relatively low microplastic abundance observed in the biota samples is consistent with the generally low values for the seawater and sediment samples. Pellets were the most common of four particle-shape classes (fibres, fragments, films, and pellets) in surface seawater, while fibres were most abundant in sediment and biota. Smaller-sized microplastics (<1.0 mm) were dominant in all samples. Microplastics in the surface seawater were dominated by low-density polypropylene and polyethylene particles, while rayon was dominant in the sediment and biota samples. Our results demonstrate that regional variability in anthropogenic activity and land-use are important controls on the spatial pattern of microplastic pollution in Hangzhou Bay.
Показать больше [+] Меньше [-]Impact of mariculture-derived microplastics on bacterial biofilm formation and their potential threat to mariculture: A case in situ study on the Sungo Bay, China
2020
Sun, Xuemei | Chen, Bijuan | Xia, Bin | Li, Qiufen | Zhu, Lin | Zhao, Xinguo | Gao, Yaping | Qu, Keming
Microplastics (MPs) pollution in the marine environment has attracted considerable global attention. However, the colonization of microorganisms on mariculture-derived MPs and their effects on mariculture remain poorly understood. In this study, the MPs (fishing nets, foams and floats) and a natural substrate, within size ranges (1–4 mm), were then incubated for 21 days in Sungo Bay (China), and the composition and diversity of bacterial communities attached on all substrates were investigated. Results showed that bacterial communities on MPs mainly originated from their surrounding seawater and sediment, with an average contribution on total MPs adherent population of 47.91% and 37.33%, respectively. Principle coordinate analysis showed that community similarity between MPs and surrounding seawater decreased with exposure time. In addition, lower average bacterial community diversity and higher relative abundances of bacteria from the genera Vibrio, Pseudoalteromonas and Alteromonas on MPs than those in their surrounding seawater and sediments indicated that MPs might enrich potential pathogens and bacteria related with carbohydrate metabolism. They are responsible for the significant differences in KEGG Orthology pathways (infectious disease and carbohydrate metabolism) between MPs and seawater. The KO pathway (Infectious Diseases) associated with MPs was also significantly higher than those with feathers in the nearshore area. MPs might be vectors for enrichment of potentially pathogenic Vibrio, and enhance the ecological risk of MPs to mariculture industry.
Показать больше [+] Меньше [-]Proliferation of antibiotic resistance genes in coastal recirculating mariculture system
2019
Wang, Jian-hua | Lu, Jian | Wu, Jun | Zhang, Yuxuan | Zhang, Cui
The abuse of antibiotics has caused the propagation of antibiotic resistance genes (ARGs) in aquaculture systems. Although the recirculating systems have been considered as a promising approach for preventing the coastal water pollution of antibiotics and ARG, rare information is available on the distribution and proliferation of ARGs in the recirculating mariculture system. This study firstly investigated the proliferation of ARGs in coastal recirculating mariculture systems. Ten subtypes of ARGs including tet (tetB, tetG, tetX), sul (sul1, sul2), qnr (qnrA, qnrB, qnrS), and erm (ermF, ermT) were detected. The absolute abundances of the ARGs detected in the mariculture farm were more than 1 × 10⁴ copies/mL. The sulfonamide resistance genes (sul1 and sul2) were the most abundant ARGs with the abundance of 3.5 × 10⁷–6.5 × 10¹⁰ copies/mL. No obvious correlation existed between the antibiotics and ARGs. Some bacteria were positively correlated with two or more ARGs to indicate the occurrence of multidrug resistance. The fluidized-bed biofilter for wastewater treatment in the recirculating system was the main breeding ground for ARGs while the UV sterilization process could reduce the ARGs. The highest flux of ARGs (6.5 × 10²¹ copies/d) indicated that the discharge of feces and residual baits was the main gateway for ARGs in the recirculating mariculture system to enter the environments.
Показать больше [+] Меньше [-]17β-estradiol as precursors of Cl/Br-DBPs in the disinfection process of different water samples
2018
During chlorine disinfection process, reactions between the disinfectant and 17β-estradiol (E2) lead to the formation of halogenated disinfection byproducts (DBPs) which can be a risk to both ecosystem and human health. The degradation and transformation products of E2 in sodium hypochlorite (NaClO) disinfection processes of different water samples were investigated. The reaction kinetics research showed that the degradation rates of E2 were considerably dependent on the initial pH value and the types of water samples. In fresh water, synthetic marine aquaculture water and seawater, the reaction rate constant was 0.133 min−1, 2.067 min−1 and 2.592 min−1, respectively. The reasons for the above phenomena may be due to the different concentrations of bromide ions (Br−) in these three water samples which could promote the reaction between NaClO and E2. Furthermore, Br− could also cause the formation of brominated DBPs (Br-DBPs). The main DBPs, reaction centers and conceivable reaction pathways were explored. Seven halogenated DBPs have been observed including three chlorinated DBPs (Cl-DBPs) and four Br-DBPs. The active sites of E2 were found to be the pentabasic cyclic ring and the ortho position of the phenol moiety as well as C9-C10 position. The identified Cl/Br-DBPs were also confirmed in actual marine aquaculture water from a shrimp pond. The comparison of bio-concentration factors (BCF) values based on calculation of EPI-suite showed that the toxicities of the Br-DBPs were stronger than that of their chloride analogues. The absorbable organic halogens (AOX) analysis also suggested that the DBPs produced in the marine aquaculture water were more toxic than that in the fresh water system.
Показать больше [+] Меньше [-]Nutrients, heavy metals and microbial communities co-driven distribution of antibiotic resistance genes in adjacent environment of mariculture
2017
Zhao, Zelong | Wang, Jing | Han, Ying | Chen, Jingwen | Liu, Guangfei | Lu, Hong | Yan, Bin | Chen, Shiaoshing
With the rapid development of aquaculture, the large amounts of pollutants were discharged into the aquatic environment, where the detected antibiotic resistance genes (ARGs) have drawn increasing attention due to their potential threats to ecological environment and human health. Thus, the impact of mariculture on ARGs was assessed and the underlying mechanism of their propagation was explained. Sediments from eight sampling sites were collected along a mariculture drainage ditch, and the sediment in Yellow River Delta National Park was used as a non-mariculture control. Microbial ARGs qPCR array and illumina sequencing of 16S rRNA gene were applied to examine the changing patterns of ARGs and bacterial communities. Results showed that 18 ARGs (3 fluoroquinolone, 1 aminoglycoside, 3 macrolide-lincosamide-streptogramin B, 2 tetracycline, and 9 beta-lactam resistance genes) were influenced by mariculture, and ARGs abundance and diversity were significantly increased in mariculture sediments (p < 0.05). A remarkable shift in bacterial community structure and composition was also observed. The abundance of most of ARGs were significantly decreased in the estuary samples, implying that seawater had a significant dilution effect on the ARGs emission from the mariculture sites. Partial redundancy analysis showed that nutrients, heavy metals, and bacteria communities might directly and indirectly contribute to ARGs propagation, suggesting that the profile and dissemination of ARGs were driven by the combined effects of multiple factors in mariculture-impacted sites.
Показать больше [+] Меньше [-]Role of mariculture in the loading and speciation of mercury at the coast of the East China Sea
2016
Liang, Peng | Gao, Xuefei | You, Qiongzhi | Zhang, Jin | Cao, Yucheng | Zhang, Chan | Wong, Ming-Hung | Wu, Sheng-Chun
The effects of mariculture on mercury (Hg) contamination and speciation in water, sediment and cultured fish in a typical mariculture zone located in Xiangshan bay, Zhejiang province, east China, were studied. Water, sediment and fish samples were collected from mariculture sites (MS) and from corresponding reference sites (RS) 2500 m away from the MS. The THg concentration in overlying water in Xiangshan bay reached as high as 16.6 ± 19.5 ng L−1, indicating that anthropogenic sources in this bay may contribution on Hg contamination in overlying water. Mariculture activities resulted in an increase in THg concentration in water from surface and bottom layers, which may be attributed to the discharge of domestic sewage and the accumulation of unconsumed fish feed and fish excreta in the benthic environment. Methylmercury (MeHg) concentrations in the bottom layer of overlying water and top surface layer of porewater underneath MS were higher than at RS, implying that mariculture activities promote Hg methylation in the interface between sediments and water. In addition, the concentrations of MeHg in sediment and porewater were significantly higher in summer than winter. It was observed that THg and MeHg contents in the muscle of blackhead seabream (Acanthopagrus schlegelii) (fed by the trash fish) were significantly higher (p < 0.001) than those in red snapper (Lutjanus campechanus) or perch (Perca fluviatilis) (fed by pellet fish feed). The THg and MeHg concentrations in the fish meat were closely related to the feeding mode, which indicate that fish feed rather than environmental media is the major pathway for Hg accumulation in fish muscle.
Показать больше [+] Меньше [-]Modeling the fate of p,p′-DDT in water and sediment of two typical estuarine bays in South China: Importance of fishing vessels' inputs
2016
Fang, Shu-Ming | Zhang, Xianming | Bao, Lian-Jun | Zeng, E. Y. (Eddy Y.)
Antifouling paint applied to fishing vessels is the primary source of dichloro-diphenyl-trichloroethane (DDT) to the coastal marine environments of China. With the aim to provide science-based support of potential regulations on DDT use in antifouling paint, we utilized a fugacity-based model to evaluate the fate and impact of p,p′-DDT, the dominant component of DDT mixture, in Daya Bay and Hailing Bay, two typical estuarine bays in South China. The emissions of p,p′-DDT from fishing vessels to the aquatic environments of Hailing Bay and Daya Bay were estimated as 9.3 and 7.7 kg yr−1, respectively. Uncertainty analysis indicated that the temporal variability of p,p′-DDT was well described by the model if fishing vessels were considered as the only direct source, i.e., fishing vessels should be the dominant source of p,p′-DDT in coastal bay areas of China. Estimated hazard quotients indicated that sediment in Hailing Bay posed high risk to the aquatic system, and it would take at least 21 years to reduce the hazards to a safe level. Moreover, p,p′-DDT tends to migrate from water to sediment in the entire Hailing Bay and Daya Bay. On the other hand, our previous research indicated that p,p′-DDT was more likely to migrate from sediment to water in the maricultured zones located in shallow waters of these two bays, where fishing vessels frequently remain. These findings suggest that relocating mariculture zones to deeper waters would reduce the likelihood of farmed fish contamination by p,p′-DDT.
Показать больше [+] Меньше [-]Use of sunlight to degrade oxytetracycline in marine aquaculture's waters
2016
Leal, J.F. | Esteves, V.I. | Santos, E.B.H.
Oxytracycline (OTC) is a broad spectrum antibiotic authorized for use in European aquaculture. Its photo-degradation has been widely studied in synthetic aqueous solutions, sometimes resorting to expensive methods and without proven effectiveness in natural waters. Thus, this work studied the possibility to apply the solar photo-degradation for removal of OTC from marine aquaculture's waters. For that, water samples were collected at different locals of the water treatment circuit, from two different aquaculture companies. Water samples were firstly characterized regarding to pH, salinity, total suspended solids (TSS), organic carbon and UV–Vis spectroscopic characteristics. Then, the samples were spiked with OTC and irradiated using simulated sunlight in order to evaluate the matrix effects on OTC photo-degradation. From kinetic results, the apparent quantum yields and the outdoor half-life times, at 40°N for midsummer and midwinter days were estimated by the first time for these conditions. For a midsummer day, at sea level, the outdoor half-life time predicted for OTC in these aquaculture's waters ranged between 21 and 25 min. Additionally, the pH and salinity effects on the OTC photo-degradation were evaluated and it has been shown that high pH values and the presence of sea salt increase the OTC photo-degradation rate in aquaculture's waters, compared to results in deionised water. The results are very promising to apply this low-cost methodology using the natural sunlight in aquaculture's waters to remove OTC.
Показать больше [+] Меньше [-]