Уточнить поиск
Результаты 1-10 из 142
A 3-year field study on lead immobilisation in paddy soil by a novel active silicate amendment Полный текст
2022
Zhao, Hanghang | Zhang, Jianxin | Wu, Feng | Huang, Xunrong | Liu, Fuhao | Wang, Lu | Zhao, Xin | Hu, Xiongfei | Gao, Pengcheng | Tang, Bo | Ji, Puhui
Lead (Pb) is a toxic metal in industrial production, which can seriously threat to human health and food safety. Thus, it is particularly crucial to reduce the content of Pb in the environment. In this study, raw fly ash (FA) was used to synthesise a new active silicate materials (IM) employing the low-temperature-assisted alkali (NaOH) roasting approach. The IM was further synthesised to form zeolite-A (ZA) using the hydrothermal method. The physicochemical characteristics of IM and ZA amendments before and after Pb²⁺ adsorption were analysed using the Scanning electron microscope-Energy Dispersive Spectrometer (SEM-EDS), Fourier Transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) apparatuses. The results revealed the considerably change in the microstructure and functional groups of IM and ZA amendments, conducive to Pb²⁺ removal. Moreover, a 3-year field experiment revealed that the IM and ZA significantly improved the growth of rice and reduced available Pb by 21%–26.8% and 9.7%–16.9%, respectively. After 3 years of remediation, the Pb concentration of the rice grain reached the national edible standard (≤0.2 mg kg⁻¹) of 0.171 mg kg⁻¹ and 0.179 mg kg⁻¹, respectively. Meanwhile, the concentration of acid-exchangeable Pb reduced, while those of reducible and residual fractions of Pb increased. There was no significant difference between the IM and ZA treatments. The potential mechanisms of remediation by the amendments were ion-exchange, complexation, precipitation, and electrostatic attraction. Overall, the results indicate that IM is suitable for the remediation of contaminated soil and promotes safe food production, and develops an environmentally friendly and cost-effective amendment for the remediation of polluted soil.
Показать больше [+] Меньше [-]Phase changes during various treatment processes for incineration bottom ash from municipal solid wastes: A review in the application-environment nexus Полный текст
2021
Zhu, Jingyu | Wei, Zhou | Luo, Zhenyi | Yu, Lei | Yin, Ke
Incineration technology has been widely employed, as an effective method to decrease the volume of waste disposal. In this review, relationships between municipal solid waste (MSW) inputs and residues after combustion―specifically, the incineration bottom ashes (IBA) of MSW, were discussed, with an emphasis on the geoenvironmental impacts of IBA associated with the complex crystal and amorphous phase reactions and changes during combustion and from their downstream treatments, whereas, their influences on IBA leaching behaviors are considered as another focus. This review summarizes the IBA leaching behaviors based on literature, showing the leaching variabilities induced by natural weathering and artificial intervention conditions, such as accelerated carbonation, washing treatment, stabilization/solidification, and thermal treatments, all of which can be attributed to changes of mineral phases and microstructure. It helps to understand IBA characteristics and transitions in application-environment nexus, and better reuse it for multiple applications.
Показать больше [+] Меньше [-]Roles of chlorine and sulphate in MSWIFA in GGBFS binder: Hydration, mechanical properties and stabilization considerations Полный текст
2021
Ren, Pengfei | Ling, Tung-Chai
In this study, municipal solid waste incineration fly ash (MSWIFA) was first washed (pretreatment) with pure water with liquid to solid (L/S) ratio of 2, 3, 6, 10, to understand the removal efficiency of chlorine and sulphate, as well as its consequent ability as alkaline activator for granulated blast furnace slag (GGBFS). Washed MSWIFA was blended with GGBFS at a fixed ratio of 3:7 to examine their impact on mechanical properties, reaction mechanism, microstructure and leaching behavior. The results showed that chlorine in MSWIFA (>70%) can be washed out easily, while the removal of sulphate was largely depended on the L/S. GGBFS can be better activated by a low L/S (e.g. 2) washed-MSWIFA with attaining the compressive strength of 45.2MPa at 28 days. The higher chlorine and sulphate contents retained in the washed-MSWIFA, the higher the total heat release in the activated GGBFS system. Calcium silicate hydrate (C–S–H), ettringite (AFt) and Friedel’s salt were the main hydration products of the activated binders. The rapid formation of AFt was mainly responsible for the 1-day strength development. Large amounts of Friedel’s salts were formed from 1 day to 3 days associated to the inhibition of sulphate, and the presence of C–S–H played the key role in long-term strength development. The leaching test of heavy metals and soluble ions also demonstrated that washed MSWIFA activated GGBFS binders were harmless to the environment.
Показать больше [+] Меньше [-]Sustainable stabilization/solidification of the Pb, Zn, and Cd contaminated soil by red mud-derived binders Полный текст
2021
Wang, Fei | Xu, Jian | Yin, Hailong | Zhang, Yunhui | Pan, Hao | Wang, Lei
Red mud and phosphogypsum are voluminous industrial by-products worldwide. They have long been disposed of in landfills or open storage, leading to a waste of resource and environmental pollution. This study provides a novel approach to recycle these industrial by-products as sustainable red mud-phosphogypsum-Portland cement (RPPC) binders for stabilization/solidification (S/S) of multimetal-contaminated soil. The physical strength, metal leachability and microstructure of S/S soil were investigated after 7-day and 28-day curing, as well as freezing-thawing (F-T) cycle and wetting-drying (W-D) cycle. The results show that the strength of soil treated by all binders fulfilled the uniaxial compressive strength requirement (350 kPa) of S/S waste in landfills. Microstructural analyses show that the main hydration products of the RPPC S/S soil are ilmenite, ettringite, anhydrite and hydrated calcium silicate. The 10% and 15% RPPC binders have a competitive metal immobilization ability compared with 10% PC, but the immobilization priority is different: Pb > Zn > Cd in RPPC system and Zn > Cd > Pb in PC system, respectively, probably due to the precipiataion of Pb²⁺ with the abundant SO₄²⁻ in phosphogypsum in RPPC system. The strength of RPPC and PC treated soil was still higher than 350 kPa except for RPPC7.5 after 10 freeze-thaw or 10 wetting-drying cycles. The RPPC binder performed worse than PC binder after both freeze-thaw and wetting-drying cycles, especially at a lower dosage. Only the metal leaching concentrations of samples treated by RPPC15 and PC10 could fulfil the Chinese standards for hazardous wastes.
Показать больше [+] Меньше [-]A feasibility study of Indian fly ash-bentonite as an alternative adsorbent composite to sand-bentonite mixes in landfill liner Полный текст
2020
Gupt, Chandra Bhanu | Bordoloi, Sanandam | Sekharan, Sreedeep | Sarmah, Ajit K.
Multi-layered engineered landfill consists of the bottom liner layer (mainly bentonite clay (B)) upon which the hazardous wastes are dumped. In current practice, sand (S) is mixed with bentonite to mitigate the adverse effects of using bentonite alone in the liner layer. Incorporation of waste and unutilized fly ash (FA) as an amendment material to B has been explored in terms of its hydro-mechanical properties, but not gauged its adsorption potential. Indian subcontinent primarily relies on the thermal power source, and FA dumps have already reached its full capacity. The objective of this study is to explore the adsorption characteristics of four B-FA composite mixes sourced within India, considering Pb²⁺ as a model contaminant. The effect of fly ash type, fly ash amendment rate and adsorbate concentration was explored in the current study and juxtaposed with B-S mixes, based on 960 batch adsorption tests. Both B-FA and B-S mixes reached equilibrium adsorption capacity within 65 min. At higher adsorbate concentrations (commonly observed in the liner), B-FA mixes exhibited superior adsorption capacity, mainly one mixed with Neyvelli fly ash (NFA). The effect of higher amendment rate had little impact on the adsorption capacity at different concentration, but gradually decreased the percentage removal of Pb²⁺. The B-S mix showed a drastic decrease in percentage removal at higher adsorbate concentration among all tested mixes. Systematic characterization including geotechnical properties, microstructure and chemical analysis was also done to interpret the obtained results. Both Freundlich and Langmuir models fitted the isotherm data well for all B-FA mixes. The maximum adsorption capacity from the isotherm was correlated to easily measurable Atterberg limits by two empirical relationships.
Показать больше [+] Меньше [-]Oxygen mobility and microstructure properties-redox performance relationship of Rh/(Ce,Zr,La)O2 catalysts Полный текст
2020
Wang, Ting | Zhou, Ren-xian
Rh/(Ce,Zr,La)O₂ (CZL) catalysts with different Ce/Zr molar ratios of 1:0, 8:1, 4:1, 2:1, 1:1, 1:2, 1:4, 1:8 and 0:1 were prepared. The relationship of microstructure, dynamic oxygen mobility and the redox properties with catalytic activity for HC, CO and NOₓ eliminations were investigated. The results demonstrate that CZL mixed oxide with Ce/Zr ratio of 1:1 exhibits the largest OSC values as 904.3 umol·g⁻¹ and structural defects. The increase of oxygen vacancies and structural defects would promote the interaction between Rh species and CZL mixed oxides, which further promotes the stabilization of RhOₓ particles and enhances the oxygen storage/release ability. Rh/CZLx catalysts with Ce/Zr molar ratio of 1:1–1:4 exhibit better catalytic activity and wider dynamic operation window due to their higher DOSC.
Показать больше [+] Меньше [-]Solidification/stabilization of Pb2+ and Zn2+ in the sludge incineration residue-based magnesium potassium phosphate cement: Physical and chemical mechanisms and competition between coexisting ions Полный текст
2019
Cao, Xing | Wang, Weibing | Ma, Rui | Sun, Shichang | Lin, Junhao
In order to exhaustively investigate the physical and chemical mechanisms of heavy metal immobilization in sludge incineration residue (SIR)-based magnesium potassium phosphate cement (MKPC), this work investigated the influence of Pb²⁺ and Zn²⁺ on the compressive strength and microstructure of SIR-based MKPC, and the efficiency of Pb and Zn immobilization. Taking the difference of Ksp (solubility product) of different heavy metal compounds as the entry point, the physical and chemical mechanisms of Pb and Zn immobilization, and the competitive mechanism between coexisting ions, were comprehensively analyzed. It was discovered that Pb²⁺ is in the form Pb₃(PO₄)₂, and Zn²⁺ is immobilized in the form Zn₂(OH)PO₄ [Zn₃(PO₄)₂ is preferentially formed, when the pH > 7, Zn₃(PO₄)₂ is converted to Zn₂(OH)PO₄]. The low solubility of heavy metal phosphates is the main reason that Pb²⁺ and Zn²⁺ are well immobilized. The preferential formation of Pb₃(PO₄)₂ (Kₛₚ = 8 × 10⁻⁴³) and Zn₃(PO₄)₂ (Kₛₚ = 9.0 × 10⁻³³) reduced the amount of MgKPO₄·6H₂O (Kₛₚ = 2.4 × 10⁻¹¹), resulting in a decrease in compressive strength. Besides, coexisting Pb²⁺ and Zn²⁺ has a competitive effect: Pb²⁺ will weaken the immobilization efficiency of Zn²⁺. The new exploration of these mechanisms provide a theoretical basis for rationally adjusting the Magnesia/Phosphate ratio to enhance the compressive strength and improve the efficiency of heavy metals immobilization.
Показать больше [+] Меньше [-]Rhamnolipid influences biosorption and biodegradation of phenanthrene by phenanthrene-degrading strain Pseudomonas sp. Ph6 Полный текст
2018
Ma, Zhao | Liu, Juan | Dick, Richard P. | Li, Hui | Shen, Di | Gao, Yanzheng | Waigi, Michael Gatheru | Ling, Wanting
Given the sub-lethal risks of synthetic surfactants, rhamnolipid is a promising class of biosurfactants with the potential to promote the bioavailability of polycyclic aromatic hydrocarbons (PAHs), to provide a favorable substitute for synthetic surfactants. However, few previous studies have integrated the behavior and mechanism behind rhamnolipid-influenced PAH biosorption and biodegradation. This is, to our knowledge, the first report of a bacterial envelope regulated link between phenanthrene (PHE) biosorption and biodegradation by rhamnolipid-induced PHE-degrading strain Pseudomonas sp. Ph6. Rhamnolipid (0─400 mg L−1) can change the cell-surface zeta potential, cell surface hydrophobicity (CSH), cell ultra-microstructure and functional groups, and then alter PHE biosorption and biodegradation of Ph6. Greater amounts of PHE sorbed on cell envelopes results in more PHE diffusing into cytochylema, thus favoring PHE intracellular biodegradation of Ph6. Rhamnolipid (≤100 mg L−1) could change the microstructures and functional groups of cell envelopes of Ph6, enhance the cell-surface zeta potential and CSH, thus consequently favor PHE biosorption and biodegradation by strain Ph6. By contrast, rhamnolipid at higher concentrations (≥200 mg L−1) hindered PHE biosorption and biodegradation. Rhamnolipid, as a biosurfactant, can be successfully utilized as an additive to improve the microbial biodegradation of PAHs in the environments.
Показать больше [+] Меньше [-]Responses of periphyton morphology, structure, and function to extreme nutrient loading Полный текст
2016
Lu, Haiying | Feng, Yanfang | Wang, Jinhua | Wu, Yonghong | Shao, Hongbo | Yang, Linzhang
Periphyton have been widely applied in aquaculture systems, however, little information is available on how periphyton respond to such high nutrient levels in water. Thus, changes in the morphological characteristics, community structure, and metabolic function of periphyton under high eutrophic waters were evaluated. The results indicated that the morphology of periphyton was affected by increasing the nutrient concentration of water, which shifted the micromorphology of periphyton from spheriform to filamentous. The periphyton under higher water nutrient levels were able to utilize more carbon source types. Additionally, higher water nutrient levels increased the bacterial and protozoal proportions in periphyton. This study fills the gap in knowledge about the responses of periphytic communities to extremely eutrophic waters. It provides valuable information on the full understanding of the periphyton-nutrient relationship in aquaculture systems, which is beneficial for regulating the microbial species or communities in periphyton by manipulating the nutrient levels in water.
Показать больше [+] Меньше [-]Study the effects of dry-wet cycles and cadmium pollution on the mechanical properties and microstructure of red clay Полный текст
2022
Song, Yu | Wang, Jian-qiang | Chen, Xue-jun | Yu, Si-zhe | Ban, Ru-long | Yang, Xin | Zhang, Xiaochen | Han, Yu
In order to study the effect of cadmium ions on the mechanical properties and micro-structure characteristics of the red clay in Guilin, we have conducted triaxial test and the scanning electron microscope tests to analyze the effects of cadmium ion concentration and the number of dry and wet cycles on the mechanical properties and micro-structure changes of the red clay. The results showed the effects of cadmium ions and dry-wet cycles destroy the structure of red clay. The cohesive force of red clay decreases with the increase of cadmium ion concentration, and the internal friction angle first increases and then decreases. With the rise in the number of dry and wet cycles, the cohesive force of cadmium-contaminated red clay first increases and then decreases, and the angle of internal friction rises gradually. Under the action of different cadmium ion concentrations, the stress-strain curve is strain hardening. With the concentration of cadmium ions increases, the strain hardening becomes more apparent; the peak value reached faster. and the axial strain corresponding to the peak value of the line decreases. With the increase in the number of wet and dry cycles, the volume of cadmium-contaminated red clay shrinks and its compactness increases; it gets the peak shear strength faster during the shearing process, and its peak value becomes larger and larger. The main reason for the phenomenon is that cadmium ions destroy the cementation between the particles. The soil particles are mainly in point contact which loosens the structure of the soil; on the other hand, the thickness of the surface diffusion layer of the clay particles increases through chemical action, The exchange of cations increases the porosity of the soil and weakens its strength. The dry-wet cycle shrinks the volume of the red clay, and the soil particles are mainly in surface contact; as the number of dry-wet cycles increases, the soil particles connection is closer, the soil porosity decreases and the strength increases.
Показать больше [+] Меньше [-]