Уточнить поиск
Результаты 1-10 из 106
Polyethylenimine-grafted nitrogen-doping magnetic biochar for efficient Cr(VI) decontamination: Insights into synthesis and adsorption mechanisms
2022
Qu, Jianhua | Zhang, Xiubo | Bi, Fuxuan | Wang, Siqi | Zhang, Xinmiao | Tao, Yue | Wang, Yifan | Zhao, Jiang | Zhang, Ying
Herein, polyethylenimine (PEI)-grafted nitrogen (N)-doping magnetic biochar (PEIMW@MNBCBM) was synthesized, and characterization results showed that the microwave-assisted PEI grafting and ball milling-assisted N doping introduced abundant amino, pyridine N and pyrrole N structures onto biochar, which possessed high affinity to Cr(VI) in the anion form. The as-prepared PEIMW@MNBCBM displayed pH-dependence adsorption performance and high tolerance to co-existing ions with maximum uptake capacity of Cr(VI) identified as 183.02 mg/g. Furthermore, PEIMW@MNBCBM could bind Cr(VI) through electrostatic attraction, complexion, precipitation, reduction and pore filling. Especially, effective reduction of Cr(VI) was ascribed to cooperative electron transfer of partial oxygen-containing functional groups, intramolecular pyridine/pyrrole N, protonated amino and Fe²⁺ on the adsorbent, while oxygen-containing and amino functional groups from N-doping biochar and PEI synergistically complexed Cr(III) via providing lone pair electrons to form coordinate bonds. Furthermore, the stable precipitation was formed between Fe³⁺ and Cr(III). Additionally, the Cr(VI) elimination efficiency could maintain 95.83% even after four adsorption-desorption cycles, suggesting PEIMW@MNBCBM as a high-performance adsorbent for Cr(VI) contaminated water remediation.
Показать больше [+] Меньше [-]A simple, rapid and accurate method for the sample preparation and quantification of meso- and microplastics in food and food waste streams
2022
Lievens, Siebe | Slegers, Thomas | Mees, Maarten A. | Thielemans, Wim | Poma, Giulia | Covaci, Adrian | Van Der Borght, Mik
Plastics are produced and used in large quantities worldwide (e.g. as food packaging). In line with this, plastic particles are found throughout the ecosphere and in various foods. As a result, plastics are also present in energy-rich waste biomass derived from the food industry, supermarkets, restaurants, etc. These waste streams are a valuable source for biogas production but can also be used to feed insects that in turn upcycle it into new high-value biomass. In both applications, the remaining residue can be used as fertilizer. Due to the present plastic particles, these applications could pose a continued threat to the environment, and both human and animal health. Therefore, the need of determining the (micro)plastic content to assess the potential danger is rising. In this research, a closed-vessel microwave-assisted acid digestion method was developed to accurately determine meso- and microplastic contents in food (waste) matrices by solubilising this food matrix. Polyvinyl chloride (PVC) food packaging foil was used to develop the method, using a full factorial design with three parameters (nitric acid concentration (c(HNO₃)), temperature (T), and time (t)). According to this model, the best practical conditions were c(HNO₃) = 0.50 mol/L, T = 170 °C, and t = 5.00 min. Subsequently, the method was tested on five other plastics, namely high- and low-density polyethylene (HDPE and LDPE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET), mixed with a food matrix, resulting in a mean plastic recovery of 102.2 ± 4.1%. Additionally, the polymers were not oxidised during the microwave digestion. For PVC and PS hardly any degradation was found, while HDPE, LDPE, and PP showed slight chain degradation, although without recovery loss. In conclusion, the method is an accurate approach to quantify the total meso- and microplastic content in food (waste) matrices with minimal change in their intrinsic characteristics.
Показать больше [+] Меньше [-]Strategies for improving the catalytic activity of metal-organic frameworks and derivatives in SR-AOPs: Facing emerging environmental pollutants
2022
Jiang, Danni | Fang, Di | Zhou, Yu | Wang, Zhiwei | Yang, Zihao | Zhu, Jian | Liu, Zhiming
As persulfate activator, Metal organic frameworks (MOFs) and derivatives are widely concerned in degradation of emerging environmental pollutants by advanced oxygen technology dominated by sulfate radical (▪) (SR-AOPs). However, the poor stability and low catalytic efficiency limit the performance of MOFs, requiring multiple strategies to further enhance their catalytic activity. The aim of this paper is to improve the catalytic activity of MOFs and their derivatives by physical and chemical enhancement strategies. Physical enhancement strategies mainly refer to the activation strategies including thermal activation, microwave activation and photoactivation. However, the physical enhancement strategies need energy consumption and require high stability of MOFs. As a substitute, chemical enhancement strategies are more widely used and represented by optimization, modification, composites and derivatives. In addition, the identification of reactive oxygen species, active site and electron distribution are important for distinguishing radical and non-radical pathways. Finally, as a new wastewater treatment technology exploration of unknown areas in SR-AOPs could better promote the technology development.
Показать больше [+] Меньше [-]Water-induced release of recalcitrant polycyclic aromatic hydrocarbons from soil organic matter during microwave-assisted solvent extraction
2021
Wang, Wei | Zhang, Yanyan | Du, Wei | Tao, Shu
Polycyclic aromatic hydrocarbons (PAHs) in soil can be recalcitrant to solvent extraction after aging. We showed in this study that mixing a small amount of water in the extracting solvent during microwave-assisted extraction (MAE) can release recalcitrant PAHs, resulting in significant improvement in the analyzed concentrations. The improvement factor (F) for the total of 16 priority PAHs (∑PAH16) listed by the United States Environmental Protection Agency was 1.44–1.55 for field soils. By comparing the F values for different soil organic components, we demonstrated that the recalcitrant PAHs were primarily associated with biochar, humic acid (HA), and humin (HM), with the F values for ∑PAH16 of 1.94, 6.62, and 4.59, respectively. The results showed that the recalcitrant PAHs comprised a sequestered fraction and a desorption-limited fraction. NMR spectra showed that water worked alone at elevated temperature to promote hydrolysis of biochar and destroy the macromolecular structure, thus causing the release of the otherwise sequestered PAHs during MAE. The substantial reduction in F values for HA and HM after demineralization indicated sequestration of PAHs in organic-mineral complexes, which can be destroyed by hot water treatment. The release of the sequestered fraction was nonselective and independent of compound hydrophobicity. In comparison, the release of the desorption-limited fraction was positively affected by the hydrophobicity of PAHs and was facilitated by the presence of water in the extracting solvent. The results of this study provide important insights into the sequestration and release of recalcitrant PAHs in soil.
Показать больше [+] Меньше [-]An innovative green protocol for the quantification of benzothiazoles, benzotriazoles and benzosulfonamides in PM10 using microwave-assisted extraction coupled with solid-phase microextraction gas chromatography tandem-mass spectrometry
2021
Naccarato, Attilio | Tassone, Antonella | Martino, Maria | Elliani, Rosangela | Sprovieri, Francesca | Pirrone, Nicola | Tagarelli, Antonio
Benzothiazoles (BTHs), benzotriazoles (BTRs), and benzenesulfonamides (BSAs) are chemicals used in several industrial and household applications. Despite these compounds are emerging pollutants, there is still a lack of information about their presence in outdoor air samples. In this paper, we developed a new method for the quantification of BTHs, BTRs, and BSAs in airborne particulate matter (PM₁₀). The extraction of fourteen analytes from PM₁₀ was accomplished by microwave-assisted extraction (MAE) using an environmentally friendly mixture of water and ethanol. SPME was used to analyze the target compounds from the MAE extract by gas chromatography-tandem mass spectrometry (SPME-GC-MS/MS), eliminating additional sample clean-up steps. The best working conditions for MAE and SPME were examined multivariately by experimental design techniques. The target compounds were quantified in selected reaction monitoring acquisition mode. The proposed method was carefully validated, and the achieved results were satisfactory in terms of linearity, lower limit of quantification (picograms per cubic meter), intra- and inter-day accuracy (81–118% and 82–114%, respectively), and precision (repeatability and reproducibility in the range 2.3–17% and 7.4–19%, respectively). The application in a real monitoring campaign showed that the developed protocol is a valuable and eco-friendly alternative to the methods proposed so far.
Показать больше [+] Меньше [-]Conversion and transformation of N species during pyrolysis of wood-based panels: A review
2021
Xu, Deliang | Yang, Liu | Zhao, Ming | Zhang, Jinrui | Syed Shatir A. Syed-Hassan, | Sun, Hongqi | Hu, Xun | Zhang, Hong | Zhang, Shu
Understanding the migration and conversion of nitrogen in wood-based panels (WBPs) during pyrolysis is fundamentally important for potentially transforming the N-containing species into valuable material-based products. This review firstly summarizes the commonly used methods for examining N evolution during the WBPs pyrolysis before probing into the association between the wood and adhesives.The potential effects of wood-adhesive interaction on the pyrolysis process are subsequently analyzed. Furthermore, the controversial statements from literature on the influence of adhesives on wood pyrolysis behavior are discussed, which is followed by the detailed investigation into the distribution and evolution of N-containing species in gas, liquid and char, respectively, during WBPs pyrolysis in recent studies. The differences in N species due to the heating sources (i.e. electrical heating vs microwave heating) are particularly compared. Finally, based on the characteristics of staged pyrolysis, co-pyrolysis and catalytic pyrolysis, the converting pathways for WBPs are proposed with an emphasis on the production of value-added chemicals and carbon materials, simultaneously mitigating NOₓ emission.
Показать больше [+] Меньше [-]Microwave-assisted rapid degradation of DDT using nanohybrids of PANI with SnO2 derived from Psidium Guajava extract
2020
Riaz, Ufana | Zia, Jannatun
The present work reports microwave-assisted synthesis of SnO₂ nanoparticles via green route using Psidium Guajava extract. For the enhancement of catalytic activity, nanohybrids of SnO₂ were formulated using different ratios of polyaniline (PANI) via ultrasound-assisted chemical polymerization. Formation of nanohybrids was confirmed via IR and XPS studies. The UV–vis DRS spectra of PANI/SnO₂ revealed significant reduction in the optical band gap upon nanohybrid formation. Microwave-assisted catalytic efficiency of pure SnO₂, PANI, PANI/SnO₂ nanohybrids was investigated using DDT as a model persistent organic pollutant. The degradation efficiency of PANI/SnO₂ was found to increase with the increase in the loading of PANI. Around 87% of DDT degradation was achieved within a very short period of 12 min under microwave irradiation using PANI/SnO₂-50/50 as catalyst. The effect of DDT concentration was explored and the degradation efficiency of PANI/SnO₂-50/50 catalyst was noticed to be as high as 82% in presence of 100 mg/L of DDT. The effect of microwave power on the degradation efficiency revealed 79% degradation using the same nanohybrid when exposed to microwave irradiation for 5 min under 1110 W microwave power. Scavenging studies confirmed the generation of OH, O₂⁻ radicals. The fragments with m/z values as low as 86 and 70 were confirmed by LCMS analysis. Recyclability tests showed that PANI/SnO₂-50/50 nanohybrid exhibited 81% degradation of DDT (500 mg/L) even after the third cycle, which reflected high catalytic efficiency as well as remarkable stability of the catalyst. This green nanohybrid could therefore be effectively utilized for the rapid degradation of persistent organic pollutants.
Показать больше [+] Меньше [-]Pinecone-derived magnetic porous hydrochar co-activated by KHCO3 and K2FeO4 for Cr(VI) and anthracene removal from water
2022
Qu, Jianhua | Liu, Yang | Meng, Jiao | Bi, Fuxuan | Ma, Shouyi | Zhang, Guangshan | Wang, Yifan | Tao, Yue | Zhao, Jiang | Zhang, Ying
Herein, magnetic porous pinecone-derived hydrochar (MPHCMW) co-activated by KHCO₃ and K₂FeO₄ through one-step microwave-assisted pyrolysis was innovatively synthesized for hexavalent chromium (Cr(VI)) and anthracene (ANT) removal from water. The analyses of characterization consequences and co-activation mechanisms not merely proved the high specific surface area (703.97 m²/g) and remarkable microporous structures of MPHCMW caused by the synergistic chemical activation of KHCO₃ and K₂FeO₄, but also testified successful loading of Fe⁰ and Fe₃O₄ on MPHCMW by the process of carbothermal reduction between K₂FeO₄ and carbon matrix of hydrochar. The resultant MPHCMW possessed pH-dependence for Cr(VI), while adsorption for ANT was hardly impacted by the pH of solution. Moreover, the adsorption processes of MPHCMW could attain equilibrium within 60 min for Cr(VI) and 30 min for ANT with multiple kinetics, and the corresponding adsorption capacity for Cr(VI) and ANT was 128.15 and 60.70 mg/g, respectively. Additionally, the adsorption percentages of MPBCMW for Cr(VI)/ANT was maintained at 87.87/82.64% after three times of adsorption-desorption cycles. Furthermore, pore filling, complexation, electrostatic interaction, reduction and ion exchange were testified to enhance the removal of Cr(VI), while the ANT removal was achieved via π-π stacking, complexation, pore filling and hydrogen bonding force.
Показать больше [+] Меньше [-]Solute pools in Nikanotee Fen watershed in the Athabasca oil sands region
2017
Simhayov, Reuven B. | Price, Jonathan S. | Smeaton, Christina M. | Parsons, Chris | Rezanezhad, Fereidoun | Van Cappellen, Philippe
Overburden and tailings materials from oil sands production were used as construction materials as part of a novel attempt to create a self-sustaining, peat accumulating fen-upland ecosystem. To evaluate the potential for elemental release from the construction materials, total elemental concentrations in the tailings sand, petroleum coke and peat used to construct a fen ecosystem were determined using microwave-assisted acid digestions and compared to a leaching experiment conducted under environmentally-relevant conditions. A comparison of solid phase to aqueous Na, Ca, S and Mg concentrations showed they were highly leachable in the materials. Given that the concentrations of these elements can affect plant community structure, it is important to understand their leachability and mobility as they migrate between materials used to construct the system. To that end, a mass balance of aqueous Na, Ca, S and Mg was conducted based on leaching experiments and materials analysis coupled with existing data from the constructed system. The data indicate that there is a large pool of leachable Na, Ca, S and Mg in the system, estimated at 27 t of Na, 14 t of Ca, 37.3 t of S and 8.8 t of Mg. Since recharge mainly drives the fen-upland system water regime, and discharge in the fen, evapo-accumulation of these solutes on the surface may occur.
Показать больше [+] Меньше [-]Assessment of organochlorine pesticide residues in Atlantic Rain Forest fragments, Rio de Janeiro, Brazil
2011
Quinete, Natalia Soares | de Oliveira, Elba dos Santos | Fernandes, Daniella R. | Avelar, Andre de Souza | Santelli, Ricardo Erthal
A superficial water quality survey in a watershed of the Paraíba do Sul River, the main water supply for the most populated cities of southeastern Brazil, was held in order to assess the impact of the expansion of agricultural activity in the near border of the Atlantic Rain Forest. The aim of this study was to investigate the presence of priority organochlorine pollutants in soils and superficial waters of Atlantic rainforest fragments in Teresópolis, Rio de Janeiro State. Soil sample preparations were compared by using ultrasound, microwave assisted extraction and Soxhlet extraction. Recoveries of matrix spiked samples ranged from 70 to 130%. Analysis of a certified soil material showed recoveries ranging from 71 to 234%. Although low concentrations of organochlorine residues were found in water and soil samples, this area is of environmental importance and concern, thus demanding a monitoring program of its compartments.
Показать больше [+] Меньше [-]