Уточнить поиск
Результаты 1-10 из 13
Seasonal occurrence of antibiotics and a beta agonist in an agriculturally-intensive watershed
2015
Jaimes-Correa, Juan C. | Snow, Daniel D. | Bartelt-Hunt, Shannon L.
We evaluated the occurrence of 12 veterinary antibiotics and a beta agonist over spatial and temporal scales in Shell Creek, an intensively agricultural watershed in Nebraska, using Polar Organic Chemical Integrative Samplers (POCIS). Twelve pharmaceuticals were detected with concentrations ranging from 0.0003 ng/L to 68 ng/L. The antibiotics measured at the highest time-weighted average concentrations were lincomycin (68 ng/L) and monensin (49 ng/L), and both compounds were detected at increased concentrations in summer months. Analysis of variance indicates that mean concentrations of detected pharmaceuticals have no significant (p > 0.01) spatial variation. However, significant temporal differences (p < 0.01) were observed. This study demonstrates the utility of passive samplers such as POCIS for monitoring ambient levels of pharmaceuticals in surface waters.
Показать больше [+] Меньше [-]Environmental fate and microbial effects of monensin, lincomycin, and sulfamethazine residues in soil
2019
D'Alessio, Matteo | Durso, Lisa M. | Miller, Daniel N. | Woodbury, Brian | Ray, Chittaranjan | Snow, Daniel D.
The impact of commonly-used livestock antibiotics on soil nitrogen transformations under varying redox conditions is largely unknown. Soil column incubations were conducted using three livestock antibiotics (monensin, lincomycin and sulfamethazine) to better understand the fate of the antibiotics, their effect on nitrogen transformation, and their impact on soil microbial communities under aerobic, anoxic, and denitrifying conditions. While monensin was not recovered in the effluent, lincomycin and sulfamethazine concentrations decreased slightly during transport through the columns. Sorption, and to a limited extent degradation, are likely to be the primary processes leading to antibiotic attenuation during leaching. Antibiotics also affected microbial respiration and clearly impacted nitrogen transformation. The occurrence of the three antibiotics as a mixture, as well as the occurrence of lincomycin alone affected, by inhibiting any nitrite reduction, the denitrification process. Discontinuing antibiotics additions restored microbial denitrification. Metagenomic analysis indicated that Proteobacteria, Bacteroidetes, Actinobacteria, and Chloroflexi were the predominant phyla observed throughout the study. Results suggested that episodic occurrence of antibiotics led to a temporal change in microbial community composition in the upper portion of the columns while only transient changes occurred in the lower portion. Thus, the occurrence of high concentrations of veterinary antibiotic residues could impact nitrogen cycling in soils receiving wastewater runoff or manure applications with potential longer-term microbial community changes possible at higher antibiotic concentrations.
Показать больше [+] Меньше [-]Persistence of elevated concentrations of PM, affiliated pharmaceuticals, and tetracycline resistance genes downwind of feedyards
2019
Wooten, Kimberly J. | Mayer, Gregory D. | Smith, Philip N.
Beef cattle feedyards have been identified as sources of large amounts of particulate matter (PM) which may transport affiliated chemicals including steroids, beta agonists, and antibiotics from feedyards into the environment. This study is the first to examine persistence of PM-affiliated pharmaceuticals downwind of feedyards using multiple downwind samples collected at increasing distances from feedyard boundaries (n = 5). Concentrations of antibiotics and ractopamine per gram of PM remained consistent at all downwind locations (out to 4.8 km) whereas concentrations per m³ air decreased significantly at distances between 0.1 and 0.7 km downwind, corresponding to significant decreases in mass of PM. Monensin was present in the highest concentrations of any measured pharmaceutical, with concentrations of 37 μg/g PM (376 ng/m³) air in samples collected within 0.1 km downwind of feedyards. Total copy count of tetracycline resistance genes (tetW, tetQ, tetO, tetM, tetL, and tetB) were also significantly increased in samples collected within 0.1 km downwind of feedyards (10⁶ copies) as compared to samples collected upwind (10³ copies) and farther downwind (10⁴ copies) of feedyard boundaries. These results suggest that transport of pharmaceutical-laden PM into the terrestrial environment is occurring primarily via PM deposition within 0.7 km of the feedyard, while aerial transport persists over longer distances (>4.8 km).
Показать больше [+] Меньше [-]Potential metabolism of pharmaceuticals in radish: Comparison of in vivo and in vitro exposure
2018
Li, Yuanbo | Chuang, Ya-Hui | Sallach, J Brett | Zhang, Wei | Boyd, Stephen A. | Li, Hui
Metabolism of pharmaceuticals in plants is important to evaluate their fate and accumulation in vegetables, and subsequently the risks to human health. However, limited knowledge is available to evaluate metabolism of pharmaceuticals in plants due to the lack of appropriate research approaches. In this study, radish was selected as a model plant to investigate metabolism of pharmaceuticals in intact plants (in vivo) growing in hydroponic solution and in plant tissue enzyme extracts (in vitro). For caffeine, six phase-I demethylation metabolites identified in the intact radish plant were also found in the plant enzyme extracts. After 7 days of in vivo exposure, the amount of the identified metabolites was about 5.4 times greater than the parent compound caffeine in radish roots. Furthermore, the metabolism potential of fifteen pharmaceuticals in radish was evaluated on the basis of mass balance. After 7 days of hydroponic exposure, oxytetracycline, trimethoprim, carbamazepine, lincomycin, monensin and tylosin manifested relatively less extent of metabolism with the mass recoveries ranging from 52.3 to 78.2%. In contrast, 17 β-estradiol, sulfamethoxazole, sulfadiazine, estrone, triclosan, acetaminophen, caffeine, carbadox and lamotrigine underwent extensive metabolism with only 3.0 to 32.1% of the parent compound recovered. In the in vitro system, 17 β-estradiol, estrone, triclosan, oxytetracycline, acetaminophen, sulfadiazine and sulfamethoxazole were readily metabolized in radish root enzyme extracts with 1.8 to 34.0% remaining after 96-h exposure. While in the leaf enzyme extracts, only triclosan was rapidly metabolized with 49.2% remaining, and others pharmaceuticals were ≥60%, indicating that the varying extents of metabolism occurred in different plant parts. This study highlights the importance of pharmaceutical metabolism in plants, and suggests that plant tissue enzyme extracts could serve as an alternative tool to assess pharmaceutical metabolism in plants.
Показать больше [+] Меньше [-]Abiotic degradation of antibiotic ionophores
2013
Bohn, Pernille | Bak, Søren A. | Björklund, Erland | Krogh, Kristine A. | Hansen, Martin
Hydrolytic and photolytic degradation were investigated for the ionophore antibiotics lasalocid, monensin, salinomycin, and narasin. The hydrolysis study was carried out by dissolving the ionophores in solutions of pH 4, 7, and 9, followed by incubation at three temperatures of 6, 22, and 28 °C for maximum 34 days. Using LC–MS/MS for chemical analysis, lasalocid was not found to hydrolyse in any of the tested environments. Monensin, salinomycin, and narasin were all stable in neutral or alkaline solution but hydrolysed in the solution with a pH of 4. Half-lives at 25 °C were calculated to be 13, 0.6, and 0.7 days for monensin, salinomycin, and narasin, respectively.Absorbance spectra from each compound indicated that only lasalocid is degraded by photolysis (half-life below 1 h) due to an absorbance maximum around 303 nm, and monensin, salinomycin, and narasin are resistant to direct photolysis because they absorb light of environmentally irrelevant wavelengths.
Показать больше [+] Меньше [-]Fertilization with Poultry Litter Increases the Abundance of Antibiotic-Resistant Bacteria in Tropical Soil: a Microcosm Study
2021
Chaves-Ulate, Carolina | Granados-Chinchilla, Fabio | Rodríguez, César
Various antimicrobial agents are used in the poultry industry to treat microbial infections and prevent disease or as growth promoters. As a result, poultry litter (PL) can contain antibiotic residues (AR), antibiotic-resistant bacteria (ARB), and antibiotic resistance genes. Still, PL is used in many countries as a fertilizer and feed supplement for cattle. To evaluate whether usage of PL in agriculture leads to the accumulation of AR and ARB accumulate in the soil, we (i) measured the concentration of monensin, tylosin, ciprofloxacin, oxytetracycline, and chlortetracycline and the abundance of culturable monensin-, tylosin-, and ciprofloxacin-resistant bacteria in 15 commercial PL samples and (ii) exposed soil microcosms to two PL regimes and followed the persistence of PL-associated ARB for 128 days through cultivation on media containing antibiotics. The PL samples analyzed contained high concentrations of monensin (27–95 mg kg⁻¹), tylosin (152–450 mg kg⁻¹), ciprofloxacin (29–101 mg kg⁻¹), and (oxy/chlor)tetracycline (13–87 mg kg⁻¹). Congruently, they included large absolute and relative numbers of bacteria capable of growing on agar plates supplemented with 5 to 50 μg mL⁻¹ monensin (medians, 10⁷–10⁹ CFU g⁻¹, 0.6–45%) or 25 to 50 μg mL⁻¹ tylosin (median, 10⁸ CFU g⁻¹, 14–26%). By contrast, the abundance of bacteria resistant to 25–250 μg mL⁻¹ CP in the PL samples was much lower (median values ranging from 10⁶ to less than 10² CFU g⁻¹, relative abundances, < 0.13%). We observed rapid increments of 1–3 logs in the amount of culturable tylosin- and CP-resistant bacteria in most microcosms upon fertilization (n = 3/4 and n = 5/8, respectively, p < 0.01). Half of these increments were sustained across the experiment (p < 0.05), demonstrating that the introduced ARB can thrive in soil. These results show that fertilization with PL can increase the basal amount of tylosin- and CP-resistant bacteria in the soil. The environmental and sanitary consequences of this finding justify changes in PL’s manufacturing process and a debate on its approved uses in agricultural systems.
Показать больше [+] Меньше [-]Effects of alkaloid extracts of mesquite pod on the products of in vitro rumen fermentation
2017
de Jesus Pereira, Taiala Cristina | Pereira, Mara Lúcia Albuquerque | Moreira, Jeruzia Vitória | Azevêdo, José Augusto Gomes | Batista, Ronan | de Paula, Vanderlúcia Fonseca | Oliveira, Brena Santos | de Jesus dos Santos, Edileusa
The objective of this study was to evaluate the effects of alkaloid extracts of Prosopis juliflora (Sw.) D.C. pods obtained by two extraction methods as compared with sodium monensin on the gas production kinetic, mitigation of methane, and rumen fermentation products using wheat bran or Tifton 85 hay as substrates, by the semi-automatic in vitro gas production technique. A completely randomized design was adopted, and two natural additives were tested made from mesquite pod (alkaloid extract I and alkaloid extract II) at three levels (3.9, 7.9, and 12 μg), sodium monensin 5 μM (positive control), and no inclusion of additives (negative control). The volume of gases produced by the degradation of the fibrous fraction of wheat bran was influenced by the concentration of the extract I added to the medium, and the amounts of 7.9 and 12 μg were equal to monensin at the lowest value. The degradation rate of the fibrous carbohydrates with additive extract I at 12 μg was lower in relation to monensin. When Tifton 85 hay was utilized, alkaloid extract I provided a shorter colonization time as compared with monensin at the added amounts of 7.9 and 12 μg and higher production of gases from the fibrous fraction but without interfering with the total volume of gases produced during 96 h of fermentation of carbohydrates. In the periods of 12 and 24 h of incubation, utilizing alkaloid extract I, the mean values of methane production with wheat bran and Tifton 85 hay were lower than monensin (p < 0.05) when the respective amounts of 7.9 and 12 μg were added. Alkaloid extract I has similar potential to sodium in reducing production of total gases, methane, and the acetate/propionate ratio.
Показать больше [+] Меньше [-]Long-term broiler litter amendments can alter the soil’s capacity to sorb monensin
2017
Doydora, Sarah A. | Sun, Peizhe | Cabrera, Miguel | Mantripragada, Nehru | Rema, John | Pavlostathis, Spyros G. | Huang, Ching-Hua | Thompson, Aaron
Monensin is a common antiparasitic drug given to poultry that contaminates poultry manure and bedding material (broiler litter). As broiler litter is commonly applied to agricultural fields as fertilizer, monensin could be released beyond the farm if it is not retained or degraded in the soil. This study aimed to assess the impact of long-term surface application of broiler litter (i.e., 17 years) on the capacity of pasture soil to sorb monensin. The soils were exposed to a range of monensin concentrations (0.18 to 1.81 μmol L⁻¹), solution pH (pH 4–9), and temperatures (15, 25, and 35 °C) and monensin was measured as loss from solution (i.e., sorption). Soils receiving long-term litter applications were hypothesized to retain more monensin than unamended soils because they have higher organic matter concentrations. However, soils from broiler litter-amended fields sorbed 46% less monensin than soils from unamended fields, likely because broiler litter also increased soil pH. The sorption of monensin to soil was strongly influenced by pH, with an order of magnitude greater sorption at pH 4 than at pH 9. Both soils had similar capacity to sorb monensin under similar solution pH, despite differences in organic carbon content (with the broiler litter-amended having 25% greater relative to the unamended soil). Temperature did not significantly impact monensin sorption for either soil. Our findings suggest increasing soil pH, for instance through liming, could enhance mobility of monensin.
Показать больше [+] Меньше [-]Estimation of environmentally relevant chemical properties of veterinary ionophore antibiotics
2016
Sun, Peizhe | Pavlostathis, Spyros G. | Huang, Ching-Hua
Monensin (MON) and salinomycin (SAL), known as polyether ionophore antibiotics (IPAs), are extensively used in livestock industry and can enter the environment via animal manure and agricultural runoff. Although some studies have investigated the environmental fate and transformation of IPAs, the lack of information on IPAs’ aqueous-phase chemical properties is a major hindrance for further in-depth research. This study was able to experimentally determine the acidity constants (pKa), metal-complex dissociation constants (Kdᵢₛₛ), and intrinsic aqueous solubility of MON species, and some of these properties of SAL. The pKₐ value of MON was found to be 4.5, close to other aliphatic carboxylic acids and the predicted value by the computer program ChemAxon. The metal-complex dissociation constants of MON were estimated to be 0.058 and 0.573 with sodium ion (Na⁺) and potassium ion (K⁺), respectively. The Kdᵢₛₛ value of SAL with sodium ion was found to be 1.31. Compared to the previous values determined in organic solvents, the Kdᵢₛₛ of MON in aqueous phase are several orders of magnitude higher but maintain the same relative selectivity toward metal ions (Na⁺ versus K⁺). The determined pKa and Kdᵢₛₛ values were also used to assess the aqueous solubility limits of different IPA species under different pH and metal ion concentrations. Results from this study provide more accurate information for the properties of IPAs. The obtained constants can be applied to predict the speciation of IPAs in various aquatic systems and help shed light on the environmental fate of IPAs.
Показать больше [+] Меньше [-]Potentials of patchouli (Pogostemon cablin) essential oil on ruminal methanogenesis, feed degradability, and enzyme activities in vitro
2019
El-Zaiat, Hani M. | Abdalla, Adibe L.
The effects of patchouli essential oil (PEO) as an alternative to antibiotics on ruminal methanogenesis, feed degradability, and enzyme activities were evaluated. The basal substrate was incubated without additives (control, CTL) and with monensin (MON, 6 μM/g DM) or patchouli essential oil (PEO, 90 μg/g DM) for 24 h. In three different runs, the gas production (GP) was recorded at 2, 4, 8, 12, and 24 h of incubation using a semi-automatic system. The results revealed that MON had decreased (P < 0.05) the net GP and CH₄ production and digestible and metabolizable energy relative to PEO supplementation. The in vitro truly degraded organic matter was not influenced by PEO application, while was reduced (P = 0.027) with MON. Both PEO and MON had similar reducing effect on the activity of carboxymethylcellulase (P = 0.030), in vitro truly degraded neutral detergent fiber (P = 0.010), NH₃-N concentrations (P = 0.012), acetate proportion (C2, P = 0.046), C2 to C3 ratio (P = 0.023), and total protozoal count (P = 0.017). Both additives recorded similar elevating potential on the α-amylase activity (P = 0.012), propionate (C3) proportion (P = 0.011), and microbial protein (P = 0.034) compared with CTL. Effects of MON and PEO on ruminal feed degradability, microbial enzyme activities, and total protozoa counts may be responsible for modifying rumen fermentation ecology. Addition of PEO may act as a desirable alternative rumen modifier for MON in ruminant diets.
Показать больше [+] Меньше [-]