Уточнить поиск
Результаты 1-10 из 22
Fine particulate matter, airway inflammation, stress response, non-specific immune function and buccal microbial diversity in young adults
2022
Lin, Zhijing | Chen, Ping | Yuan, Zhi | Yang, Liyan | Miao, Lin | Wang, Hua | Xu, Dexiang
Fine particulate matter (PM₂.₅) has been associated with risk of oral and respiratory diseases. However, the biological mechanisms of adverse oral and respiratory health response to PM₂.₅ fluctuation have not been well characterized. This study aims to explore the relationships of PM₂.₅ with airway inflammation, salivary biomarkers and buccal mucosa microbiota. We performed a panel study among 40 college students involving 4 follow-ups from August to October 2021 in Hefei, Anhui Province, China. Health outcomes included fractional exhaled nitric oxide (FeNO), salivary biomarkers [C-reactive protein (CRP), cortisol, lysozyme and alpha-amylase] and buccal mucosa microbial diversity. Linear mixed-effect models were applied to explore the cumulative impacts of PM₂.₅ on health indicators. PM₂.₅ was positively correlated with FeNO, CRP, cortisol and alpha-amylase, while negatively with lysozyme. Per 10-μg/m³ increase in PM₂.₅ was linked to maximum increments in FeNO of 10.71% (95%CI: 2.01%, 19.41%) at lag 0–24 h, in CRP of 7.10% (95%CI: 5.39%, 8.81%) at lag 0–24 h, in cortisol of 1.25% (95%CI: 0.44%, 2.07%) at lag 0–48 h, and in alpha-amylase of 2.12% (95%CI: 0.53%, 3.71%) at lag 0–24 h, while associated with maximum decrement in lysozyme of 0.53% (95%CI: 0.12%, 0.95%) at lag 0–72 h. Increased PM₂.₅ was linked to reduction in the richness and evenness of buccal microbe and o_Bacillales and o_Bacteroidales were identified as differential microbes after PM₂.₅ inhalation. Bio-information analysis indicated that immunity system pathway was the most important enriched abundant process altered by PM₂.₅ exposure. In summary, short-term PM₂.₅ exposure may impair oral and respiratory health by inducing inflammatory and stress responses, weakening immune function and altering buccal mucosa microbial diversity.
Показать больше [+] Меньше [-]Volcanic ash-driven worsening of mucosal inflammation in an experimental colitis model
2022
Orsini Delgado, María Lucía | Sambuelli, Alicia | Negreira, Silvia | Gil, Anibal | D′Elia, Leandro | Smaldini, Paola L. | Docena, Guillermo H.
Particulate matter exposure and related chemical changes in drinking water have been associated with health problems and inflammatory disorders. This study aimed to examine the effect of orally administered ash-water dilution on the gut of mice under normal and inflammatory conditions.Balb/c mice received ash-released soluble and dust-suspended components in the drinking water for 14 days. On day 7, animals were intrarectally instilled with TNBS in ethanol or flagellin from Salmonella typhimurium in PBS. At sacrifice, colon segments were collected and histologic damage, mRNA expression and cytokine levels in tissue were evaluated. In addition, these parameters were also evaluated in IL-10 null mice.We found that mice that received 5% w. fine-ash dilution in the drinking water worsened colitis signs. Weight loss, shortening of the colon, tissue edema with mucosa and submucosa cell infiltration and production of pro-inflammatory cytokines and chemokines were enhanced compared to control mice. A more pronounced inflammation was observed in IL-10 null mice. In addition, markers of NLRP3-dependent inflammasome activation were found in animals exposed to ash.In conclusion, ingestion of contaminated water with dust-suspended particulate matter enhanced the inflammatory response in the gut, probably due to alteration of the gut barrier and promoting an intense contact with the luminal content. This study critically appraises the response for fine particulate matter in uncommon illnesses reported for volcanic ash pollution. We suggest actions to enable better prediction and assessment the health impacts of volcanic eruptions.
Показать больше [+] Меньше [-]Mechanism of copper nanoparticle toxicity in rainbow trout olfactory mucosa
2021
Razmara, Parastoo | Imbery, Jacob J. | Koide, Emily | Helbing, Caren C. | Wiseman, Steve B. | Gauthier, Patrick T. | Bray, Douglas F. | Needham, Maurice | Haight, Travis | Zovoilis, Athanasios | Pyle, Gregory G.
Chemosensory perception is crucial for fish reproduction and survival. Direct contact of olfactory neuroepithelium to the surrounding environment makes it vulnerable to contaminants in aquatic ecosystems. Copper nanoparticles (CuNPs), which are increasingly used in commercial and domestic applications due their exceptional properties, can impair fish olfactory function. However, the molecular events underlying olfactory toxicity of CuNPs are largely unexplored. Our results suggested that CuNPs were bioavailable to olfactory mucosal cells. Using RNA-seq, we compared the effect of CuNPs and copper ions (Cu²⁺) on gene transcript profiles of rainbow trout (Oncorhynchus mykiss) olfactory mucosa. The narrow overlap in differential gene expression between the CuNP- and Cu²⁺-exposed fish revealed that these two contaminants exert their effects through distinct mechanisms. We propose a transcript-based conceptual model that shows that olfactory signal transduction, calcium homeostasis, and synaptic vesicular signaling were affected by CuNPs in the olfactory sensory neurons (OSNs). Neuroregenerative pathways were also impaired by CuNPs. In contrast, Cu²⁺ did not induce toxicity pathways and rather upregulated regeneration pathways. Both Cu treatments reduced immune system pathway transcripts. However, suppression of transcripts that were associated with inflammatory signaling was only observed with CuNPs. Neither oxidative stress nor apoptosis were triggered by Cu²⁺ or CuNPs in mucosal cells. Dysregulation of transcripts that regulate function, maintenance, and reestablishment of damaged olfactory mucosa represents critical mechanisms of toxicity of CuNPs. The loss of olfaction by CuNPs may impact survival of rainbow trout and impose an ecological risk to fish populations in contaminated environments.
Показать больше [+] Меньше [-]Effects of high-dose bisphenol A on the mouse oral mucosa: A possible link with oral cancers
2021
Araujo Almeida, Tatiana Fernandes | Oliveira, Sicília Rezende | Mayra da Silva, Janine | Fernandes de Oliveira, Ana Laura | de Lourdes Cardeal, Zenilda | Menezes, Helvécio Costa | Gomes, José Messias | Campolina-Silva, Gabriel Henrique | Oliveira, Cleida Aparecida | Macari, Soraia | Garlet, Gustavo Pompermaier | Alves Diniz, Ivana Márcia | Leopoldino, Andréia Machado | Aparecida Silva, Tarcília
Bisphenol A (BPA) is an endocrine disrupting chemical able to promote hormone-responsive tumors. The major route of BPA contamination being oral, the aim of the present study was to investigate BPA effects on oral cells. Here, we evaluated the impact of sub-chronic in vivo exposure to BPA and its in vitro effects on neoplastic and non-neoplastic oral cells. We evaluated the oral mucosa of mice chronically exposed to BPA (200 mg/L). The response of keratinocytes (NOK–SI) and Head and Neck (HN) Squamous Cell Carcinoma (SCC), HN12 and HN13 cell lines to BPA was examined. In vivo, BPA accumulated in oral tissues and caused an increase in epithelial proliferative activity. BPA disrupted the function of keratinocytes by altering pro-survival and proliferative pathways and the secretion of cytokines and growth factors. In tumor cells, BPA induced proliferative, invasive, pro-angiogenic, and epigenetic paths. Our data highlight the harmful effects of BPA on oral mucosa and, tumorigenic and non-tumorigenic cells. Additionally, BPA may be a modifier of oral cancer cell behavior by prompting a functional shift to a more aggressive phenotype.
Показать больше [+] Меньше [-]Genotoxicological analyses of insectivorous bats (Mammalia: Chiroptera) in central Brazil: The oral epithelium as an indicator of environmental quality
2019
Benvindo-Souza, Marcelino | Borges, Rinneu Elias | Pacheco, Susi Missel | Santos, Lia Raquel de Souza
The micronucleus (MN) test of the human buccal mucosa was developed more than 30 years ago, although this technique has only recently been applied to wild mammals. This paper presents a pioneering study in the genotoxicological evaluation of the exfoliated cells of the buccal mucosa of bats. The assay was applied to two insectivorous bat species (Noctilio albiventris and Pteronotus parnellii) sampled in riparian corridors located in the city of Palmas (capital of the Brazilian state of Tocantins), with the results being compared with those obtained for a third insectivorous species (Nyctinomops laticaudatus), which has established a colony under a road bridge in the same region. This colony represents one of the largest molossidae populations ever recorded in Brazil. A significantly higher frequency of micronuclei was recorded in this colony, as well as a number of other nuclear abnormalities, including binucleated cells, cells with condensed chromatin and karyolysis, in comparison with the bats from the riparian corridors, indicating that the bats from the bridge colony are more susceptible to genotoxic damage. Thus, it is demonstrated the importance of the biomarker (MN) for use in wild animals and allows to conclude that colony bats are more susceptible to genotoxic damages.
Показать больше [+] Меньше [-]Evaluation of Multiple Organ Dysfunction Score (MODS) and the Sequential Organ Failure Assessment (SOFA) score as in-hospital outcome predictors among cases of hydrogen cyanamide exposure: a cross-sectional study
2021
Sharif, Asmaa Fady | Fayed, Manar Maher
Dormex is widely used as a plant growth regulator in developing countries such as Egypt as well as worldwide. Despite the widespread use of Dormex, little is known about the exact mechanism of action and toxic profile. The current study aims to outline the factors that predict in-hospital outcome and the need for intensive care unit (ICU) admission among the patients who presented with acute hydrogen cyanamide exposure as well as to evaluate the roles of the Multiple Organ Dysfunction Score (MODS) and the Sequential Organ Failure Assessment (SOFA) score as unfavorable outcome predictors. This is a retrospective cross-sectional study including all cases diagnosed with acute hydrogen cyanamide exposure who presented to the Tanta Poison Control Center during the past 6 years (January 1, 2015–January 1, 2020). Patient data were collected in a case report form, including the history of exposure, clinical data, laboratory investigations, and radiologic studies. Four scoring systems were carried out upon presentation: the Glasgow Coma Scale, poison severity score, MODS, and SOFA score. Thirty-five patients were enrolled in the current study. Most of the presented cases were males exposed unintentionally in an occupational setting. The mean participant age was 34.1 ± 15.51 years. The most common presenting complaints were throat irritation in all cases, vomiting and hallucinations presented equally in 68.6%, and headache occurred in 51.4%, whereas skin and mucous membrane burn was present in 40% of cases. Patients showing one or more of the following criteria were expected to have an urgent need for ICU admission: MODS >3.5, SOFA >4.5, length of hospital stay >30 hours, prothrombin time >14.75 seconds, serum glutamic pyruvic transaminase >67.5 U/L, and serum glutamic oxaloacetic transaminase >58.5 U/L. When the length of hospital stay was combined with the four scoring systems, only MODS yielded a significant prediction. Study results indicate that MODS and SOFA scores are considered excellent outcome predictors; MODS is more accurate, specific, and treatment independent, whereas the use of the SOFA score is more feasible with simple cardiovascular function assessment.
Показать больше [+] Меньше [-]Effect of cold exposure and capsaicin on the expression of histone acetylation and Toll-like receptors in 1,2-dimethylhydrazine-induced colon carcinogenesis
2021
Qin, Jingchun | Li, Huixuan | Yu, Weitao | Wei, Li | Wen, Bin
Previous studies have indicated that capsaicin-rich diet and cold weather have shown strong association with tumor incidence. Thus, we investigated the effects of capsaicin and cold exposure in 1,2-dimethylhydrazine (DMH)-induced colorectal cancer as well as the mechanisms underlying capsaicin and cold-induced CRC. Rats were randomly divided into four groups and received cold still water and capsaicin via intragastric gavage until the end of the experiment. The rat’s body weight, thymus weight, and food intakes were assessed. Global levels of histone H3K9, H3K18, H3K27, and H4K16 acetylation and histone deacetylase (HDACs) in colon mucosa were assessed by western blot. Expression levels of Toll-like receptors 2 (TLR2) and Toll-like receptors 4 (TLR4) were measured by western blot and reverse-transcriptase quantitative polymerase chain reaction (qPCR). We found that cold and low-dose capsaicin increased tumor numbers and multiplicity, although there were no differences in tumor incidence. Additionally, rat exposure to cold water and capsaicin display further higher levels of histone H3 lysine 9 (H3K9AC), histone H3 lysine 18 (H3K18AC), histone H3 lysine 27 (H3K27AC), and HDACs compared with the DMH and normal rats. In contrast, a considerable decrease of histone H4 lysine 16 (H4K16AC) was detected in the colon mucosa. Cold and low-dose capsaicin exposure groups were also increased TLR2 and TLR4 protein levels and mRNA levels. These results suggest that chronic cold exposure and capsaicin at a low-dose intervention exacerbate ectopic expression of global histone acetylation and TLR level, which are crucial mechanisms responsible for the progression of colorectal cancer in rats.
Показать больше [+] Меньше [-]Evaluation of Pediatric Early Warning System and Drooling Reluctance Oropharynx Others Leukocytosis scores as prognostic tools for pediatric caustic ingestion: a two-center, cross-sectional study
2022
Sharif, Asmaa Fady | Gameel, Dina El Gameel El | Abdo, Sanaa Abd El-Fatah | Elgebally, Elsayed Ibrahim | Fayed, Manar Maher
Caustic chemicals are widely distributed in our environment. Exposure to caustic agents is a lifelong problem associated with severe tissue and mucous membrane injuries. In pediatrics, corrosive exposure is the most common cause of nonpharmaceutical exposure presenting to poison control centers. Therefore, this study evaluated the role of the Pediatric Early Warning System (PEWS) and Drooling Reluctance Oropharynx Others Leukocytosis (DROOL) scores as early in-hospital outcome predictors following corrosive ingestion. The current study was a two-center, retrospective, cross-sectional study carried out among pediatric patients diagnosed with acute caustic ingestion during the past 4 years. Most exposure occurred accidentally among boys (59.4%) living in rural areas (51.9%) of preschool age (50% were 2–4 years old). Residence, body temperature, respiratory rate, vomiting, skin and mucosal burns, retrosternal pain, respiratory distress, Oxygen (O2) saturation, Glasgow Coma Scale score, HCO₃ level, total bilirubin level, anemia, leukocytosis, and presence of free peritoneal fluid were significant predictors of esophageal injuries (p < 0.05). DROOL and PEWS scoring were the most significant predictors of esophageal injuries with worthy predictive power, where odds ratio (95% confidence interval (CI)) was 1.76 (0.97–3.17) and 0.47 (0.21–0.99) for PEWS and DROOL, respectively. At a cutoff of < 6.5, the DROOL score could predict esophageal injuries excellently, with AUC = 0.931; sensitivity, 91.7%; specificity, 72.5%; and overall accuracy, 91.3%. At a cutoff of > 6.5, PEWS could significantly predict unfavorable outcomes, with AUC = 0.893; sensitivity, 94.4%; specificity, 71.9%; and overall accuracy, 89.3%. However, PEWS better predicted the need for admittance to the intensive care unit (ICU). Pediatric Early Warning System (PEWS) and Drooling Reluctance Oropharynx Others Leukocytosis (DROOL) are potentially useful accurate scorings that could predict the esophageal injuries and ICU admission following corrosive ingestion in pediatrics.
Показать больше [+] Меньше [-]The Role of Mucus in Mytella falcata (Orbigny 1842) Gills from Polluted Environments
2009
David, José Augusto de Oliveira | Fontanetti, Carmem S.
Bivalve mussels can concentrate pollutants which, in high amounts, can cause cellular, physiological and behavioral changes. The gill mucus is essential for many metabolic and behavioral procedures on marine mussels including the response to environmental pollution. The present work analyzed the mucous cell number in Mytella falcata gill filaments from three sites of Santos estuary (Brazil) with different levels of sediment contamination named as sites A, B, and C. Site A is located at a low impacted region of the estuary, and sites B and C are under influence of port activities, domestic sewage, and industries like a still mill located in front of site C (the most contaminated area with high amounts of polycyclic aromatic hydrocarbons). An increase in mucous cell number was detected in animals from sites B and C, when compared to site A; this increase occurred preferentially in the frontal zone and was related to sediment contamination. Mucous cell analysis can be used as an efficient biomarker. It is suggested that mucus produced in lateral and abfrontal zones is responsible for eliminating pollutants previously absorbed and mucus produced in frontal zone is responsible for pollutant arrest and elimination as pseudofeces.
Показать больше [+] Меньше [-]Protective effects of dietary betaine on intestinal barrier function and cecal microbial community in indigenous broiler chickens exposed to high temperature environment
2021
Liu, Wen-Chao | Guo, Yan | An, Li-Long | Zhao, Zhi-Hui
High temperature environment causes reduction in productivity in broilers by disrupting the intestinal barrier function. This study aimed to investigate the protective effects of dietary betaine on intestinal barrier function and cecal microbial community in indigenous broilers (Huaixiang chickens) exposed to high temperature environment. A total of 144 5-week-old male broilers (average initial body weight of 401.62 ± 9.51 g) were randomly allocated to three treatments for 10 weeks feeding trial; each treatment contained six replicates with eight birds per replicate. The three treatments included normal temperature control group (NT, fed basal diet, 26 ± 1 °C), high temperature control group (HT, fed basal diet, 32 ± 1 °C for 8 h/day), and HT group supplemented 1000 mg/kg betaine (HTB). The results showed that high temperature environment reduced the Occludin, Claudin-4, and ZO-1 expressions in duodenal mucosa (P < 0.05). Dietary betaine improved the Claudin-4 and ZO-1 expressions of duodenal mucosa (P < 0.05). In jejunal mucosa, HT group had lower Occludin, Claudin-1, Claudin-4, and ZO-1 expressions than NT group (P < 0.05). Compared with HT group, HTB group had higher Occludin and ZO-1 expression (P < 0.05). In ileal mucosa, the relative mRNA expression of ZO-1 in HT group was lower than those in NT group (P < 0.01), and dietary betaine (HTB group) improved ZO-1 expression compared with HT group (P < 0.05). Based on the results of 16S rRNA sequencing, the enriched and dominant microbials in NT group are Epsilonbacteraeota, Bacteroidetes, and Gammaproteobacterial, the enriched and dominant microbial in HT group is Muribaculaceae, and Firmicutes is the enriched and dominant microbial in HTB group. Taken together, the findings revealed that dietary betaine improved the intestinal barrier function and cecal microbial community in indigenous broilers under high ambient temperature.
Показать больше [+] Меньше [-]