Уточнить поиск
Результаты 1-10 из 124
Synthesis and Characterization of Fe3O4- SiO2 Nanoparticles as Adsorbent Material for Methyl Blue Dye Removal from Aqueous Solutions
2022
Mohammed Ali, Nisreen Sabti | Alalwan, Hayder A. | Alminshid, Alaa H. | Mohammed, Malik M.
In this work, Fe3O4-SiO2 nanoparticles were synthesized, characterized, and applied as adsorbent material to remove methyl blue stain from an aqueous solution. The prepared nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and Brunauer–Emmett–Teller (BET) to determine the physical surface properties and correlate them to the adsorption efficiency. In addition, this study investigated the influence of several parameters on the removal percentage and adsorption capacity. Specifically, this study investigated the impact of changing the following parameters: pH (1 – 8), agitation speed (Uspeed; 100 - 350 rpm), initial methyl blue (MB) concentration (1 - 100 mg/L), adsorbent dose (0.05 to 0.15 g), and contact time (10 - 100 min). The characterization study reveals that the prepared material has an excellent surface area (385 ± 5 m2/g) and pore volume (0.31 cm3/g) which enhances the adsorption capacity. In addition, the prepared material showed excellent efficiency where the removal percentage reached 99.0±1% at the optimal operating conditions and the maximum adsorption capacity was 40 mg/g. This study delivers a full elucidation of the adsorption of MB dye by Fe3O4-SiO2 NPs which considers a promising inexpensive adsorbent. It also delivers important insight information about the adsorption process and the influence of each parameter, which fill the lack in this field.
Показать больше [+] Меньше [-]The role of nanoadsorbents and nanocomposite adsorbents in the removal of heavy metals from wastewater: A review and prospect
2021
Nik Abdul Ghani, N. R. | Jami, M. S. | Alam, M. Z.
Significant attention has been given to nanotechnology as an emerging approach in water/wastewater treatment for heavy metals removal. Numerous research works on synthesizing, fabrication and upgrading nanoparticles have reported as an efficient adsorbent in removal of wide range of heavy metals from wastewater. This review intends to provide researchers with understanding and knowledge regarding the efficient nanoadsorbents, their adsorption mechanism towards selected heavy metals and fundamental principles of nanoadsorbent materials synthesis. In addition, further attention on the modification of nanoadsorbent and development of nanocomposites are highlighted in this paper as value added products to increase the adsorption capacity and enhance the heavy metals removal. Possible challenges and direction on utilization of nanocomposites for heavy metal removal in real wastewater effluent are discussed in view of their removal capability and cost efficiency. Future research works on developing a cost-effective way of nanocomposite production and toxicity testing of nanomaterials in wastewater applications are recommended. Further studies on the efficiency of the nanoadsorbents in pilot or industrial scale are highly needed to test the practicality of the nanoadsorbents for selected heavy metals removal from real wastewater.
Показать больше [+] Меньше [-]Current opinion: What is a nanoplastic?
2018
Gigault, Julien | ter Halle, Alexandra | Baudrimont, Magalie | Pascal, Pierre-Yves | Gauffre, Fabienne | Phi, Thuy-Linh | El Hadri, Hind | Grassl, Bruno | Reynaud, Stephanie | Pascal, Pierre-Yves | Géosciences Rennes (GR) ; Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des sciences de l'environnement de Rennes (OSERen) ; Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Chimie des colloïdes, polymères & assemblages complexes (Softmat) ; Institut de Chimie de Toulouse (ICT) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Fédération de Recherche Fluides, Energie, Réacteurs, Matériaux et Transferts (FERMAT) ; Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) | Environnements et Paléoenvironnements OCéaniques (EPOC) ; Observatoire aquitain des sciences de l'univers (OASU) ; Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS) | Adaptation aux milieux extrêmes ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS) | Institut des Sciences Chimiques de Rennes (ISCR) ; Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes) ; Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS) | Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM) ; Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS) | This work was supported by the French National Agency of Research (ANR-17-CE34-0008: PEPSEA) and the Interdisciplinary Mission of the French National Center for Scientific Research (CNRS). | ANR-17-CE34-0008,PEPSEA,Nanoparticules de plastiques dans l'environnement: source, impact et prédiction(2017)
International audience | With the large amount of attention being given to microplastics in the environment, several researchers have begun to consider the fragmentation of plastics down to lower scales (i.e., the sub-micrometer scale). The term “nanoplastics” is still under debate, and different studies have set the upper size limit at either 1000 nm or 100 nm. The aim of the present work is to propose a definition of nanoplastics, based on our recently published and unpublished research definition of nanoplastics. We define nanoplastics as particles unintentionally produced (i.e. from the degradation and the manufacturing of the plastic objects) and presenting a colloidal behavior, within the size range from 1 to 1000 nm.
Показать больше [+] Меньше [-]Evaluation of methods to determine adsorption of polycyclic aromatic hydrocarbons to dispersed carbon nanotubes
2017
Glomstad, Berit | Sørensen, Lisbet | Liu, Jingfu | Shen, Mohai | Zindler, Florian | Jenssen, Bjørn Munro | Booth, Andy
A number of methods have been reported for determining hydrophobic organic compound adsorption to dispersed carbon nanotubes (CNTs), but their accuracy and reliability remain uncertain. We have evaluated three methods to investigate the adsorption of phenanthrene (a model polycyclic aromatic hydrocarbon; PAH) to CNTs with different physicochemical properties; dialysis tube (DT) protected negligible depletion solid phase microextraction (DT-nd-SPME), ultracentrifugation and filtration using various types of filters. Dispersed CNTs adhered to the unprotected PDMS-coated fibers used in nd-SPME. Protection of the fibers from CNT adherence was investigated with hydrophilic DT, but high PAH sorption to the DT was observed. The efficiency of ultracentrifugation and filtration to separate CNTs from the water phase depended on CNT physicochemical properties. While non-functionalized CNTs were efficiently separated from the water phase using ultracentrifugation, incomplete separation of carboxyl functionalized CNTs was observed. Filtration efficiency varied with different filter types (composition and pore size), and non-functionalized CNTs were more easily separated from the water phase than functionalized CNTs. Sorption of phenanthrene was high (<70%) for three of the filters tested, making them unsuitable for the assessment of phenanthrene adsorption to CNTs. Filtration using a hydrophilic polytetrafluoroethylene (PTFE) filter membrane (0.1 µm) was found to be a simple and precise technique for the determination of phenanthrene adsorption to a range of CNTs, efficiently separating all types of CNTs and exhibiting a good and highly reproducible recovery of phenanthrene (82%) over the concentration range tested (70-735 µg/L). | acceptedVersion
Показать больше [+] Меньше [-]Graphene-derived antibacterial nanocomposites for water disinfection: Current and future perspectives
2022
Antimicrobial nanomaterials provide numerous opportunities for the synthesis of next-generation sustainable water disinfectants. Using the keywords graphene and water disinfection and graphene antibacterial activity, a detailed search of the Scopus database yielded 198 and 1433 studies on using graphene for water disinfection applications and graphene antibacterial activity in the last ten years, respectively. Graphene family nanomaterials (GFNs) have emerged as effective antibacterial agents. The current innovations in graphene-, graphene oxide (GO)-, reduced graphene oxide (rGO)-, and graphene quantum dot (GQD)-based nanocomposites for water disinfection, including their functionalization with semiconductor photocatalysts and metal and metal oxide nanoparticles, have been thoroughly discussed in this review. Furthermore, their novel application in the fabrication of 3D porous hydrogels, thin films, and membranes has been emphasized. The physicochemical and structural properties affecting their antibacterial efficiency, such as sheet size, layer number, shape, edges, smoothness/roughness, arrangement mode, aggregation, dispersibility, and surface functionalization have been highlighted. The various mechanisms involved in GFN antibacterial action have been reviewed, including the mechanisms of membrane stress, ROS-dependent and -independent oxidative stress, cell wrapping/trapping, charge transfer, and interaction with cellular components. For safe applications, the potential biosafety and biocompatibility of GFNs in aquatic environments are emphasized. Finally, the current limitations and future perspectives are discussed. This review may provide ideas for developing efficient and practical solutions using graphene-, GO-, rGO-, and GQD-based nanocomposites in water disinfection by rationally employing their unique properties.
Показать больше [+] Меньше [-]Nano-enabled agrochemicals/materials: Potential human health impact, risk assessment, management strategies and future prospects
2022
Okeke, Emmanuel Sunday | Ezeorba, Timothy Prince Chidike | Mao, Guanghua | Chen, Yao | Feng, Weiwei | Wu, Xiangyang
Nanotechnology is a rapidly developing technology that will have a significant impact on product development in the next few years. The technology is already being employed in cutting-edge cosmetic and healthcare products. Nanotechnology and nanoparticles have a strong potential for product and process innovation in the food industrial sector. This is already being demonstrated by food product availability made using nanotechnology. Nanotechnologies will have an impact on food security, packaging materials, delivery systems, bioavailability, and new disease detection materials in the food production chain, contributing to the UN Millennium Development Goals targets. Food products using nanoparticles are already gaining traction into the market, with an emphasis on online sales. This means that pre- and post-marketing regulatory frameworks and risk assessments must meet certain standards. There are potential advantages of nanotechnologies for agriculture, consumers and the food industry at large as they are with other new and growing technologies. However, little is understood about the safety implications of applying nanotechnologies to agriculture and incorporating nanoparticles into food. As a result, policymakers and scientists must move quickly, as regulatory systems appear to require change, and scientists should contribute to these adaptations. Their combined efforts should make it easier to reduce health and environmental impacts while also promoting the economic growth of nanotechnologies in the food supply chain. This review highlighted the benefits of a number of nano enabled agrochemicals/materials, the potential health impacts as well as the risk assessment and risk management for nanoparticles in the agriculture and food production chain.
Показать больше [+] Меньше [-]Pentachlorophenol and ciprofloxacin present dissimilar joint toxicities with carbon nanotubes to Bacillus subtilis
2021
Deng, Rui | Yang, Kun | Lin, Daohui
Discharged carbon nanotubes (CNTs) likely interact with co-existing organic contaminants (OCs) and pose joint toxicity to environmental microbes. Herein, hydrophobic pentachlorophenol (PCP) and hydrophilic ciprofloxacin (CIP) were used as representative OCs and their joint toxicities with CNTs to Bacillus subtilis were systematically investigated at cellular, biochemical, and omics levels. The 3-h bacterial growth half inhibitory concentrations of CNTs, PCP, and CIP were 12.5 ± 2.6, 3.5 ± 0.5, and 0.46 ± 0.03 mg/L, respectively, and they all could damage cell membrane, increase intracellular oxidative stress, and alter bacterial metabolomics and transcriptomics; while CNTs-PCP and CNTs-CIP binary exposures exhibited distinct additive and synergistic toxicities, respectively. CNTs increased bacterial bioaccumulation of PCP and CIP via destabilizing and damaging cell membrane. PCP reduced the bioaccumulation of CNTs, while CIP had no significant effect; this difference could be owing to the different effects of the two OCs on cell-surface hydrophobicity and CNTs electronegativity. The additive toxicity outcome upon CNTs-PCP co-exposure could be a result of the balance between the increased toxicity from increased PCP bioaccumulation and the decreased toxicity from decreased CNTs bioaccumulation. The increased bioaccumulation of CIP contributed to the synergistic toxicity upon CNTs-CIP co-exposure, as confirmed by the increased inhibition of topoisomerase Ⅳ activity and interference in gene expressions regulating ABC transporters and lysine biosynthesis. The findings provide novel insights into environmental risks of CNTs.
Показать больше [+] Меньше [-]Ingestion and effects of cerium oxide nanoparticles on Spodoptera frugiperda (Lepidoptera: Noctuidae)
2021
Castro, Bárbara M.M. | Santos-Rasera, Joyce R. | Alves, Dejane S. | Marucci, Rosangela C. | Carvalho, Geraldo A. | Carvalho, Hudson W.P.
The objective of this study was to evaluate the biological and nutritional characteristics of Spodoptera frugiperda (Lepidoptera: Noctuidae), an arthropod pest widely distributed in agricultural regions, after exposure to nano-CeO₂ via an artificial diet and to investigate the presence of cerium in the body of this insect through X-ray fluorescence mapping. Nano-CeO₂, micro-CeO₂, and Ce(NO₃)₃ were incorporated into the diet (0.1, 1, 10, and 100 mg of Ce L⁻¹). Cerium was detected in caterpillars fed with diets containing nano-CeO₂ (1, 10 and 100 mg of Ce L⁻¹), micro-CeO₂ and Ce(NO₃)₃, and in feces of caterpillars from the first generation fed diets with nano-CeO₂ at 100 mg of Ce L⁻¹ as well. The results indicate that nano-CeO₂ caused negative effects on S. frugiperda. After it was consumed by the caterpillars, the nano-CeO₂ reduced up to 4.8% of the pupal weight and 60% of egg viability. Unlike what occurred with micro-CeO₂ and Ce(NO₃)₃, nano-CeO₂ negatively affected nutritional parameters of this insect, as consumption rate two times higher, increase of up to 80.8% of relative metabolic rate, reduction of up to 42.3% efficiency of conversion of ingested and 47.2% of digested food, and increase of up to 1.7% of metabolic cost and 8.7% of apparent digestibility. Cerium caused 6.8–16.9% pupal weight reduction in second generation specimens, even without the caterpillars having contact with the cerium via artificial diet. The results show the importance of new ecotoxicological studies with nano-CeO₂ for S. frugiperda in semi-field and field conditions to confirm the toxicity.
Показать больше [+] Меньше [-]Differential histological, cellular and organism-wide response of earthworms exposed to multi-layer graphenes with different morphologies and hydrophobicity
2020
Zhang, Haiyun | Vidonish, Julia | Lv, Weiguang | Wang, Xilong | Álvarez, Pedro
The growing use of graphene-based nanomaterials (GBNs) for various applications increases the probability of their environmental releases and calls for a systematic assessment of their potential impacts on soil invertebrates that serve as an important link along terrestrial food chains. Here, we investigated the response of earthworms (Eisenia fetida) to three types of multi-layer graphenes (MLGs) (G1, G2 and G3 with 12–15 layers) with variable morphology (lateral sizes: 7.4 ± 0.3, 6.4 ± 0.1 and 2.8 ± 0.1 μm; thicknesses: 5.0 ± 0.1, 4.2 ± 0.1 and 4.0 ± 0.2 nm, respectively) and hydrophobicity ((O + N)/C ratios: 0.029, 0.044 and 0.075; contact angles: 122.8, 118.8 and 115.1°, respectively). Exposure to these materials was conducted for 28 days (except for 48-h avoidance test) separately in potting or farm soil at 0.2% and 1% by weight. Earthworms avoided both soils when amended with 1% of the smaller and more hydrophilic MLGs (G2 and G3), leading to a decreased trend in worm cocoon formation. The smallest and most hydrophilic MLG (G3), which was easier to assimilate, also significantly inhibited the viability (20.2–56.0%) and mitochondrial membrane potential (32.0–48.5%) of worm coelomocytes in both soils. In contrast, oxidative damage (indicated by lipid peroxides) was more pronounced upon exposure to more hydrophobic and larger graphenic materials (G1 and G2), which were attributed to facilitated adhesion to and disruption of worm membranes. These findings highlight the importance of MLG morphology and hydrophobicity in their potential toxicity and mode of action, as well as ecological risks associated with incidental and accidental releases.
Показать больше [+] Меньше [-]Sulfide reduction can significantly enhance transport of biochar fine particles in saturated porous medium
2020
Ma, Pengkun | Chen, Wei
The release of fine particles from biochar materials applied in the environment may have important environmental implications, such as mobilization of environmental contaminants. In natural environments biochar fine particles can undergo various transformation processes, which may change their surface chemistry and consequently, the mobility of the particles. Here, we show that sulfide reduction can significantly alter the transport of wheat-straw- and pine-wood-derived biochar fine particles in saturated porous media. Counterintuitively, the sulfide-reduced biochar particles exhibited greater mobility in artificial groundwater than their non-reduced counterparts, even though reduction led to decrease of surface charge negativity and increase of hydrophobicity (from the removal of surface O-functional groups), both should favor particle deposition, as predicted based on extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) theory. Using transport experiments conducted in single-cation background solutions containing K⁺, Mg²⁺ or Ca²⁺ under different pH conditions, we show that the surprisingly greater mobility of sulfide-reduced biochar particles was attributable to the removal of surface carboxyl groups during reduction, as this markedly alleviated particle deposition through cation bridging, wherein Ca²⁺ acted as the bridging agent in linking the surface O-functional groups of biochar particles and quartz sand. These findings show the critical roles of surface properties in dictating the mobility of biochar fine particles and call for further understanding of their transport properties, which apparently cannot be simply extrapolated based on the findings of other (engineered) carbonaceous nanomaterials.
Показать больше [+] Меньше [-]