Уточнить поиск
Результаты 1-10 из 188
The experimental phytotoxicology of germanium in relation to silicon.
1990
Puerner N.J. | Siegel S.M. | Siegel B.Z.
Histopathological lesions and DNA adducts in the liver of European 1 flounder (Platichthysflesus) collected in the Seine estuary versus two reference estuarine systems on the FrenchAtlantic coast
2013
Cachot , Jérôme(auteur de correspondance) (Université de Bordeaux, Talence(France).) | Cherel , Yan (INRA , Nantes (France). UMR 0703 Physiopathologie animale et biothérapies du muscle et du système nerveux) | Larcher , Thibaut (INRA , Nantes (France). UMR 0703 Physiopathologie animale et biothérapies du muscle et du système nerveux) | Pfohl-Leszkowicz , Annie (Université de Toulouse CNRS, Castanet-Tolosan(France).) | Laroche , Jean (Université de BrestLaboratoire des Sciences de l’Environnement Marin LEMARInstitut Universitaire Européen de la Mer, BrestPlouzané(France). UMR 6539) | Quiniou , Louis (Université de BrestLaboratoire des Sciences de l’Environnement Marin LEMARInstitut Universitaire Européen de la Mer, BrestPlouzané(France). UMR 6539) | Morin , Jocelyne (Institut Français de Recherche pour l'Exploitation de la Mer, Port en bessin(France).) | Schmitz , Julien (Institut Français du Pétrole, Rueil-Malmaison(France).) | Burgeot , Thierry (Institut Français de Recherche pour l'Exploitation de la Mer, Nantes(France). Département Polluants chimiques) | Pottier , Didier (Université de Caen Basse Normandie, Caen(France). UR ABTE EA 4651)
Association between gaseous air pollutants and biomarkers of systemic inflammation: A systematic review and meta-analysis Полный текст
2022
Xu, Zhouyang | Wang, Wanzhou | Liu, Qisijing | Li, Zichuan | Lei, Lei | Ren, Lihua | Deng, Furong | Guo, Xinbiao | Wu, Ziyuan
Studies have linked gaseous air pollutants to multiple health effects via inflammatory pathways. Several major inflammatory biomarkers, including C-reactive protein (CRP), fibrinogen, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) have also been considered as predictors of cardiovascular disease. However, there has been no meta-analysis to evaluate the associations between gaseous air pollutants and these typical biomarkers of inflammation to date. To evaluate the overall associations between short-term and long-term exposures to ambient ozone (O₃), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), carbon dioxide (CO) and major inflammatory biomarkers including CRP, fibrinogen, IL-6 and TNF-α. A meta-analysis was conducted for publications from PubMed, Web of Science, Scopus and EMBASE databases up to Feb 1st, 2021. The meta-analysis included 38 studies conducted among 210,438 participants. Generally, we only observed significant positive associations between short-term exposures to gaseous air pollutants and inflammatory biomarkers. For a 10 μg/m³ increase in short-term exposure to O₃, NO₂, and SO₂, there were significant increases of 1.05% (95%CI: 0.09%, 2.02%), 1.60% (95%CI: 0.49%, 2.72%), and 10.44% (95%CI: 4.20%, 17.05%) in CRP, respectively. Meanwhile, a 10 μg/m³ increase in NO₂ was also associated with a 4.85% (95%CI: 1.10%, 8.73%) increase in TNF-α. Long-term exposures to gaseous air pollutants were not statistically associated with these biomarkers, but the study numbers were relatively small. Subgroup analyses found more apparent associations in studies with better study design, higher quality, and smaller sample size. Meanwhile, the associations also varied across studies conducted in different geographical regions. Short-term exposure to gaseous air pollutants is associated with increased levels of circulating inflammatory biomarkers, suggesting that a systemic inflammatory state is activated upon exposure. More studies on long-term exposure to gaseous air pollutants and inflammatory biomarkers are warranted to verify the associations.
Показать больше [+] Меньше [-]Interactive effects of microplastic pollution and heat stress on reef-building corals Полный текст
2021
Plastic pollution is an emerging stressor that increases pressure on ecosystems such as coral reefs that are already challenged by climate change. However, the effects of plastic pollution in combination with global warming are largely unknown. Thus, the goal of this study was to determine the cumulative effects of microplastic pollution with that of global warming on reef-building coral species and to compare the severity of both stressors. For this, we conducted a series of three controlled laboratory experiments and exposed a broad range of coral species (Acropora muricata, Montipora digitata, Porites lutea, Pocillopora verrucosa, and Stylophora pistillata) to microplastic particles in a range of concentrations (2.5–2500 particles L⁻¹) and mixtures (from different industrial sectors) at ambient temperatures and in combination with heat stress. We show that microplastic can occasionally have both aggravating or mitigating effects on the corals’ thermal tolerance. In comparison to heat stress, however, microplastic constitutes a minor stressor. While heat stress led to decreased photosynthetic efficiency of algal symbionts, and increased bleaching, tissue necrosis, and mortality, treatment with microplastic particles had only minor effects on the physiology and health of the tested coral species at ambient temperatures. These findings underline that while efforts to reduce plastic pollution should continue, they should not replace more urgent efforts to halt global warming, which are immediately needed to preserve remaining coral reef ecosystems.
Показать больше [+] Меньше [-]Detection of anti-cancer drugs and metabolites in the effluents from a large Brazilian cancer hospital and an evaluation of ecotoxicology Полный текст
2021
de Oliveira Klein, Mariana | Serrano, Sergio V. | Santos-Neto, Álvaro | da Cruz, Claudinei | Brunetti, Isabella Alves | Lebre, Daniel | Gimenez, Maíse Pastore | Reis, Rui M. | Silveira, Henrique C.S.
The use of chemotherapy agents has been growing worldwide, due to the increase number of cancer cases. In several countries, mainly in Europe countries, these drugs have been detected in hospitals and municipal wastewaters. In Brazil this issue is poorly explored. The main goal of this study was to assess the presence of three anti-cancer drugs, 5-fluorouracil (5-FU), gemcitabine (GEM) and cyclophosphamide (CP), and two metabolites, alpha-fluoro-beta-alanine (3-NH₂-F) and 2′-deoxy-2′,2′-difluorouridine (2-DOH-DiF), in effluents from a large cancer hospital, in the municipal wastewater treatment plant (WWTP) influent and effluent, and also to evaluate toxicity of the mixtures of these compounds by ecotoxicological testing in zebrafish. The sample collections were performed in Barretos Cancer Hospital of the large cancer center in Brazil. After each collection, the samples were filtered for subsequent Liquid Chromatography Mass Spectrometry analysis. The presence of CP, GEM, and both metabolites (3-NH₂-F and 2-DOH-DiF) were detected in the hospital wastewater and the WWTP influent. Three drugs, GEM, 2-DOH-DiF and CP, were detected in the WWTP effluent. Two drugs were detected below the limit of quantification, 2-DOH-DiF: <LOQ (above 1400 ng L⁻¹) and CP: <LOQ (above 300 ng L⁻¹), and GEM was quantified at 420 ng L⁻¹. Furthermore, 2-DOH-DiF (116,000 ng L⁻¹) was detected at the highest level in the hospital wastewater. There were no zebrafish deaths at any of the concentrations of the compounds used. However, we observed histological changes, including aneurysms and edema in the gills and areas of necrosis of the liver. In summary, we found higher concentrations of CP, GEM and both metabolites (3-NH₂-F and 2-DOH-DiF) were detected for the first time. There is currently no legislation regarding the discharge of anti-cancer drugs in effluents in Brazil. This study is first to focus on effluents from specific treatments from a large cancer hospital located in small city in Brazil.
Показать больше [+] Меньше [-]Physiological plasticity and acclimatory responses to salinity stress are ion-specific in the mayfly, Neocloeon triangulifer Полный текст
2021
Orr, Sarah E. | Negrão Watanabe, Tatiane Terumi | Buchwalter, David B.
Freshwater salinization is a rapidly emerging ecological issue and is correlated with significant declines in aquatic biodiversity. It remains unclear how changing salinity regimes affect the physiology of sensitive aquatic insects. We used the parthenogenetic mayfly, Neocloeon triangulifer, to ask how ionic exposure history alters physiological processes and responses to subsequent major ion exposures. Using radiotracers (²²Na, ³⁵SO₄, and ⁴⁵Ca), we observed that mayflies chronically reared in elevated sodium or sulfate (157 mg L⁻¹ Na or 667 mg L⁻¹ SO₄) had 2-fold (p < 0.0001) and 8-fold (p < 0.0001) lower ion uptake rates than mayflies reared in dilute control water (16 mg L⁻¹ Na and 23 mg L⁻¹ SO₄) and subsequently transferred to elevated salinities, respectively. These acclimatory ion transport changes provided protection in 96-h toxicity bioassays for sodium, but not sulfate. Interestingly, calcium uptake was uniformly much lower and minimally influenced by exposure history, but was poorly tolerated in the toxicity bioassays. With qRT-PCR, we observed that the expression of many ion transporter genes in mayflies was influenced by elevated salinity in an ion-specific manner (general upregulation in response to sulfate, downregulation in response to calcium). Elevated sodium exposure had minimal influence on the same genes. Finally, we provide novel light microscopic evidence of histomorphological changes within the epithelium of the Malpighian tubules (insect primary excretory system) that undergoes cellular degeneration and necrosis secondary to calcium toxicity. We conclude that physiological plasticity to salinity stress is ion-specific and provide evidence for ion-specific toxicity mechanisms in N. triangulifer.
Показать больше [+] Меньше [-]Long-term exposure of high concentration heavy metals induced toxicity, fatality, and gut microbial dysbiosis in common carp, Cyprinus carpio Полный текст
2020
Heavy metals (HMs) in an aquatic environment mainly affects fish, and thus, fish are convenient pollution bio-indicators. In this study, the toxic effects of HM mixture (chromium (Cr), cadmium (Cd), copper (Cu)) in 0 mg/L to 3.2 mg/L concentration range was investigated in Cyprinus carpio (28 days). HM accumulation, histopathology, oxidative stress, and gut microbial changes were evaluated. HMs accumulated in the order of Cr > Cu > Cd, primarily in the kidneys and finally scales. Reactive oxygen species generation increased in all exposure groups up to day 14, with maximum generation at 3.2 mg/L mixture, which later decreased on day 28 in all. Malondialdehydeand and superoxide dismutase levels increased from day 7 to 28 with increased HM concentrations, while total protein showed an inverse trend. Gill histopathology showed major changes such as uplifted and disintegrated primary lamella, and secondary lamella shortening. The kidneys were characterized by glomerular necrosis, Bowman’s capsule expansion, and tubular space dilatation. Proteobacteria and Firmicutes abundance increased up to 59.4% and 99.16% in 0.8 mg/L and 3.2 mg/L treatment groups, respectively. This study provided a better understanding on the physiology and gut microbiota alteration in C. carpio under multiple HM stress.
Показать больше [+] Меньше [-]Protective effects of a novel pyrazolecarboxamide derivative against lead nitrate induced oxidative stress and DNA damage in Clarias gariepinus Полный текст
2019
Soliman, Hamdy A.M. | Abū al-Saʻūd, Muḥammad Ḥāmid Muʻawwaḍ | Lee, Jae-seong | Sayed, Alaa El-Din H.
Pyrazole derivatives display diverse biological and pharmacological activities. The aim of this study is to investigate the antioxidant properties of a novel pyrazolecarboxamide derivative (4-amino-N-[(4-chlorophenyl)]-3-methyl-1-phenyl-1H-thieno [2, 3-c] pyrazole-5-carboxamide) in African catfish, Clarias gariepinus, exposed to 1 mg/L PbNO₃. Fish were intramuscularly injected with pyrazole-5-carboxamidederivative according to the following groupings: Group 1 (control), Group 2 (1 mg/L lead nitrate), Group 3 (1 mg/L lead nitrate + 5 mg pyrazole derivative/kg body weight), and Group 4 (1 mg/L lead nitrate + 10 mg pyrazole derivative/kg body weight) for two weeks and four weeks. Lead nitrate (1 mg/L) caused significant elevation of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine, uric acid, cholesterol, and glucose-6-phosphate dehydrogenase (G6PDH) compared to the control group after two and four weeks of exposure, while serum total lipids, alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) were significantly reduced compared to the control group. Furthermore, levels of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) and total antioxidant capacity (TAC) were reduced in group 2 compared to the control group. However, in group 2, hepatic lipid peroxidation (LPO) and DNA fragmentation percentage were significantly increased compared to the control group. Histopathological changes in the liver of lead-exposed groups included marked disturbance of hepatic tissue organization, degeneration of hepatocytes, dilation of blood sinusoids and the central vein as well as necrosis. Injection of pyrazole derivative for two weeks and four weeks reversed alterations in biochemical parameters, antioxidant biomarkers, lipid peroxidation, hepatic DNA damage, and histopathological changes in liver tissue induced by 1 mg/L lead nitrate. This amelioration was higher in response to high-dose pyrazole derivative (10 mg) at the fourth week of exposure, showing concentration-and time-dependency. Overall, the sensitized derivative pyrazolecarboxamide is likely a useful tool to minimize the effects of lead toxicity due to its potent antioxidant activity.
Показать больше [+] Меньше [-]Crystalline phase-dependent eco-toxicity of titania nanoparticles to freshwater biofilms Полный текст
2017
Li, Kun | Qian, Jin | Wang, Peifang | Wang, Chao | Liu, Jingjing | Tian, Xin | Lu, Bianhe | Shen, Mengmeng
The potential toxic impacts of different crystal phases of titania nanoparticles (TNPs) on freshwater biofilms, especially under ultraviolet C irradiation (UVC), are unknown. Here, adverse impacts of three phases (anatase, rutile, and P25, 50 mg L−1 respectively) with UVC irradiation (An-UV, Ru-UV, and P25-UV) on freshwater biofilms were conducted. Characterization experiments revealed that rutile TNPs had a higher water environment stability than anatase and P25 TNPs, possessing a stronger photocatalytic activity under UVC irradiation. Phase-dependent inhibition of cell viability and significant decreases of four- and five-fold in algal biomass at 12 h of exposure were observed compared with unexposed biofilms. Moreover, phase-dependent oxidative stress resulted in remarkably significant reductions (P < 0.01) of the photosynthetic yields of the biofilms, to 40.32% (P25-UV), 48.39% (An-UV), and 46.77% (Ru-UV) of the plateau value obtained in the unexposed biofilms. A shift in community composition that manifested as a strong reduction in diatoms, indicating cyanobacteria and green algae were more tolerant than diatoms when exposed to TNPs. In terms of the toxic mechanisms, rutile TNPs resulted in apoptosis by inducing excessive intracellular reactive oxygen species (ROS) production, whereas P25 and anatase TNPs tended to catalyze enormous acellular ROS lead to cell necrosis under UVC irradiation.
Показать больше [+] Меньше [-]Native Prussian carp (Carassius gibelio) health status, biochemical and histological responses to treated wastewaters Полный текст
2016
Topić Popović, Natalija | Strunjak-Perović, Ivančica | Barišić, Josip | Kepec, Slavko | Jadan, Margita | Beer-Ljubić, Blanka | Matijatko, Vesna | Palić, Dušan | Klobučar, Goran | Babić, Sanja | Gajdoš Kljusurić, Jasenka | Čož-Rakovac, Rozelindra
The aim of this study was to assess the impact of treated wastewaters on native wild Prussian carp inhabiting effluent-receiving waters (ERC) receiving municipal and sugar plant treated wastewaters, further downstream waters (DW), and a detached canal unaffected by the WWTP activities. To that end, general fish health status was determined, including plasma biochemical, haematological, oxidative stress and tissue histopathological indices, over three seasons. The greatest tissue alterations were in fall in ERC during sugar beet processing, as hypertrophy of gill epithelial and interlamellar cells, necrosis and lymphocytic infiltration, hyperplasia and hypertrophy of renal tubules, distention of hepatic sinusoids. In fall the lowest leukocytes, lymphocytes and granulocytes (2467 ± 565, 1333 ± 264, 1133 ± 488 cells/μL respectively), as well as highest plasma ALP (52.7 ± 19.39 U/L) were measured. ERC in fall had the highest ammonium (20 mg/L), nitrite (1.48 mg/L), nitrate (13.4 mg/L), and lowest dissolved O2 (1.23 mg/L). Gill, kidney and liver alterations, and the highest plasma cholesterol (9.1 ± 1.98 mmol/L) were noted in DW fish in fall. Tissue morphology during sugar cane processing seems a consequence of cellular and structural tissue integrity loss. Structural heterogeneity of gills and spleen was enhanced with increasing concentrations of heavy metals and correlated with oxidative stress (SOD 392.5 ± 77.28 U/L). Monogenean infestation was moderate in ERC fish in all seasons compared with DW fish. Prussian carp biological responses to multiple stressors, measured by the effects of WWTP on blood and tissue parameters, reached far downstream and were not of localized nature. This study demonstrated that in aquatic environments impacted with complex contaminants acting synergistically, causal relationships between biological responses and environmental stressors should be interpreted. Integrated histopathological, haematological and biochemical findings are valuable biomarkers for native fish adaptive patterns and monitoring of water quality/pollution of freshwater ecosystems.
Показать больше [+] Меньше [-]