Уточнить поиск
Результаты 1-10 из 1,828
Potential of Lemna minor in Ni and Cr removal from aqueous solution
2015
Goswami, Chandrima | Majumder, Arunabha
Duckweeds are of special interest, as they are naturally growing weeds that have the capacity to tolerate and remove toxic pollutants, including heavy metals from the environment. Studies have revealed that duckweed (Lemna minor) can tolerate and remove heavy metals from aqueous solutions. In the present study, the efficiency of L. minor in the removal of Ni and Cr individually from aqueous solutions was investigated at concentrations of 3.05, 3.98 and 4.9 mg/L for Ni and 1.91, 2.98, and 4.2 mg/L for Cr. Experiments were run for 22 days, after which the metal content in the plant was estimated by atomic absorption spectrophotometer (AAS). The duckweed showed higher percentage of Ni removal than Cr. Specific Growth Rate (SGR) was found to be reduced at high concentrations of both Ni and Cr. Statistical analysis suggested that the growth of the plant was affected by the toxic effect of both Ni and Cr. Bioaccumulation of Ni was higher than Cr in L. minor. The mechanism of removal of both Ni and Cr followed second order kinetics. It is suggested that these duckweeds can remove Ni and Cr from aqueous solution and can also accumulate the same in considerable concentrations, at low initial metal concentrations.
Показать больше [+] Меньше [-]Chemical and mineralogical forms of Cu and Ni in contaminated soils from the Sudbury mining and smelting region, Canada.
1996
Adamo P. | Dudka S. | Wilson M.J. | McHardy W.J.
Assessment of the interactions of metals and nitrilotriacetic acid in soil/sludge mixtures.
1987
Garnett K. | Kirk P.W.W. | Lester J.N. | Perry R.
Historical changes of soil metal background values in select areas of China.
1991
Li J. | Wu Y.
Fluxes of Cu, Zn, Pb, Cd, Cr, and Ni in temperate forest ecosystems. A literature review.
1989
Bergkvist B. | Folkeson L. | Berggren D.
Physicochemical and biological characterisation of different dredged sediment deposit sites in France
2006
Capilla, Xavier | Schwartz, Christophe | Bedell, Jean-Philippe | Sterckeman, Thibault | Perrodin, Yves | Morel, Jean-Louis | Laboratoire des Sciences de l'Environnement ; École Nationale des Travaux Publics de l'État (ENTPE) | Laboratoire Sols et Environnement (LSE) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL)
Physicochemical and biological characterisation of different dredged sediment deposit sites in France
Показать больше [+] Меньше [-]Catalytic hydrogenolysis of plastic to liquid hydrocarbons over a nickel-based catalyst
2022
Zhao, Zhigang | Li, Zheng | Zhang, Xiangkun | Li, Tan | Li, Yuqing | Chen, Xingkun | Wang, Kaige
The catalytic hydrogenolysis of a typical model compound of mulching film waste, polyethylene, was investigated as a potential way to improve economic efficiency of mulching film recycling. Nickel-based heterogeneous catalysts are proposed for polyethylene hydrogenolysis to produce liquid hydrocarbons. Among catalysts supported on various carriers, Ni/SiO₂ catalyst shows the highest activity which may due to the interactions between nickel and silica with the formation of nickel phyllosilicate. As high as 81.18% total gasoline and diesel range hydrocarbon was obtained from the polyethylene hydrogenolysis at relatively mild condition of 280 °C, and 3 MPa cold hydrogen pressure. The result is comparable to what have been reported in previous studies using noble metal catalysts. The gasoline and diesel range hydrocarbon are n-alkanes with a distribution at a range of C₄–C₂₂. The gas products are primarily CH₄ along with a small amount of C₂H₆ and C₃H₈. High yield of CH₄ as much as 9.68% was observed for the cleavage of molecule occurs along the alkane chain.
Показать больше [+] Меньше [-]Ni accumulation and effects on a representative Cnidaria - Exaiptasia pallida during single element exposure and in combination with Mn
2022
Iyagbaye, Louis | Reichelt-Brushett, Amanda | Benkendorff, Kirsten
Nickel (Ni) and manganese (Mn) are well known for the production of steel and alloys and are commonly found co-occurring in Ni ores. They are metals of environmental concern and contamination in the marine environment is problematic single exposures and in combination. Several studies have documented the effects of single metal exposure on the model anemone E. pallida, but research on the effects of metal mixtures is far less common. This novel study assesses the accumulation and stress effects of Ni and Mn over a 12-d exposure period. E. pallida were exposed in two separate experiments; Ni alone and Ni in combination with Mn, to assess accumulation, along with any effect on the density of symbionts and anemone tentacle length. Anemones were transferred to ambient seawater to assess depuration and recovery over 6 d. Anemone tissue accumulated Ni at a magnitude of five times higher in a mixture of 0.5 mg Ni/L with 2.5 mg Mn/L compared to the same concentration in a single Ni exposure experiment. In both experiments, Ni and Mn preferentially accumulated in the Symbiodinium spp. compared to the anemone tissue, but Ni depuration was more rapid in the mixture than Ni alone exposure. This study reveals a significant reduction in anemone Symbiodinium spp. density after exposure to Ni and Mn mixtures, but not with Ni exposure alone. A significant dose-dependent reduction in tentacle length was observed in anemones after 12 d of the Ni exposure both with and without Mn. The estimated sublethal concentration that causes tentacle retraction in 50% of test anemones (EC50) by Ni was 0.51 (0.25–0.73) mg/L, while in combination with Mn the EC50 was 0.30 mg Ni/L (confidence limits not calculatable). The present data reveals the importance of testing metal effects in combination before establishing safe limits for marine invertebrates.
Показать больше [+] Меньше [-]Heavy metal pollution of soils and risk assessment in Houston, Texas following Hurricane Harvey
2022
Han, Inkyu | Whitworth, Kristina W. | Christensen, Brian | Afshar, Masoud | An Han, Heyreoun | Rammah, Amal | Oluwadairo, Temitope | Symanski, Elaine
In August 2017, after Hurricane Harvey made landfall, almost 52 inches of rain fell during a three-day period along the Gulf Coast Region of Texas, including Harris County, where Houston is located. Harris County was heavily impacted with over 177,000 homes and buildings (approximately 12 percent of all buildings in the county) experiencing flooding. The objective of this study was to measure 13 heavy metals in soil in residential areas and to assess cancer and non-cancer risk for children and adults after floodwaters receded. Between September and November 2017, we collected 174 surface soil samples in 10 communities, which were classified as “High Environmental Impact” or “Low Environmental Impact” communities, based on a composite metric of six environmental parameters. A second campaign was conducted between May 2019 and July 2019 when additional 204 soil samples were collected. Concentrations of metals at both sampling campaigns were higher in High Environmental Impact communities than in Low Environmental Impact communities and there was little change in metal levels between the two sampling periods. The Pollution Indices of lead (Pb), zinc, copper, nickel, and manganese in High Environmental Impact communities were significantly higher than those in Low Environmental Impact communities. Further, cancer risk estimates in three communities for arsenic through soil ingestion were greater than 1 in 1,000,000. Although average soil Pb was lower than the benchmark of the United States Environmental Protection Agency, the hazard indices for non-cancer outcomes in three communities, mostly attributed to Pb, were greater than 1. Health risk estimates for children living in these communities were greater than those for adults.
Показать больше [+] Меньше [-]Integrated transcriptomics and proteomics revealed the distinct toxicological effects of multi-metal contamination on oysters
2021
Li, Yunlong | Wang, Wen-Xiong
The Pearl River Estuary (PRE) is the largest estuary in southern China and under high metal stress. In the present study, we employed an integrated method of transcriptomics and proteomics to investigate the ecotoxicological effects of trace metals on the Hong Kong oyster Crassostrea hongkongensis. Three oyster populations with distinct spatial distributions of metals were sampled, including the Control (Station QA, the lowest metal levels), the High Cd (Station JZ, the highest Cd), and the High Zn–Cu–Cr–Ni (Station LFS, with the highest levels of zinc, copper, chromium, and nickel). Dominant metals in oysters were differentiated by principal component analysis (PCA), and theirgene and protein profiles were studied using RNA-seq and iTRAQ techniques. Of the 2250 proteins identified at both protein and RNA levels, 70 proteins exhibited differential expressions in response to metal stress in oysters from the two contaminated stations. There were 8 proteins altered at both stations, with the potential effects on mitochondria and endoplasmic reticulum by Ag. The genotoxicity, including impaired DNA replication and transcription, was specifically observed in the High Cd oysters with the dominating influence of Cd. The structural components (cytoskeleton and chromosome-associated proteins) were impaired by the over-accumulated Cu, Zn, Cr, and Ni at Station LFS. However, enhanced tRNA biogenesis and exosome activity might help the oysters to alleviate the toxicities resulting from their exposure to these metals. Our study provided comprehensive information on the molecular changes in oysters at both protein and RNA levels in responding to multi-levels of trace metal stress.
Показать больше [+] Меньше [-]