Уточнить поиск
Результаты 1-10 из 142
Foliar leaching and root uptake of Ca, Mg and K in relation to acid fog effects on Douglas-fir.
1990
Turner D.P. | Tingey D.T.
Uptake of terbuthylazine and its medium polar metabolites into maize plants.
1995
Gayler S. | Trapp S. | Matthies M. | Schroll R. | Behrendt H.
Chromium in plant growth and development: Toxicity, tolerance and hormesis
2022
López-Bucio, Jesús Salvador | Ravelo-Ortega, Gustavo | López-Bucio, José
Research over the last three decades showed that chromium, particularly the oxyanion chromate Cr(VI) behaves as a toxic environmental pollutant that strongly damages plants due to oxidative stress, disruption of nutrient uptake, photosynthesis and metabolism, and ultimately, represses growth and development. However, mild Cr(VI) concentrations promote growth, induce adventitious root formation, reinforce the root cap, and produce twin roots from single root meristems under conditions that compromise cell viability, indicating its important role as a driver for root organogenesis. In recent years, considerable advance has been made towards deciphering the molecular mechanisms for root sensing of chromate, including the identification of regulatory proteins such as SOLITARY ROOT and MEDIATOR 18 that orchestrate the multilevel dynamics of the oxyanion. Cr(VI) decreases the expression of several glutamate receptors, whereas amino acids such as glutamate, cysteine and proline confer protection to plants from hexavalent chromium stress. The crosstalk between plant hormones, including auxin, ethylene, and jasmonic acid enables tissues to balance growth and defense under Cr(VI)-induced oxidative damage, which may be useful to better adapt crops to biotic and abiotic challenges. The highly contrasting responses of plants manifested at the transcriptional and translational levels depend on the concentration of chromate in the media, and fit well with the concept of hormesis, an adaptive mechanism that primes plants for resistance to environmental challenges, toxins or pollutants. Here, we review the contrasting facets of Cr(VI) in plants including the cellular, hormonal and molecular aspects that mechanistically separate its toxic effects from biostimulant outputs.
Показать больше [+] Меньше [-]Source contribution analysis of nutrient pollution in a P-rich watershed: Implications for integrated water quality management
2021
Han, Jianxu | Xin, Zhuohang | Han, Feng | Xu, Bo | Wang, Longfan | Zhang, Chi | Zheng, Yi
It is still a great challenge to address nutrient pollution issues caused by various point sources and non-point sources on the watershed scale. Source contribution analysis based on watershed modeling can help watershed managers identify major pollution sources, propose effective management plans and make smart decisions. This study demonstrated a technical procedure for addressing watershed-scale water pollution problems in an agriculture-dominated watershed, using the Dengsha River Watershed (DRW) in Dalian, China as an example. The SWAT model was improved by considering the constraints of soil nutrient concentration, i.e., nitrogen (N) and phosphorus (P), when modeling the nutrient uptake by a typical crop, corn. Then the modified SWAT model was used to quantify the contributions of all known pollution sources to the N and P pollution in the DRW. The results showed that crop production and trans-administrative wastewater discharge were the two dominant sources of nutrient pollution. This study further examined the responses of nutrient loss and crop yield to different fertilizer application schemes. The results showed that N fertilizer was the limiting factor for crop yield and that excessive levels of P were stored in the agricultural soils of the DRW. An N fertilizer application rate of approximately 40% of the current rate was suggested to balance water quality and environmental protection with crop production. The long-term impact of legacy P was investigated with a 100-year future simulation that showed the crop growth could maintain for 12 years even after P fertilization ceased. Our study highlights the need to consider source attribution, fertilizer application and legacy P impacts in agriculture-dominated watersheds. The analysis framework used in this study can provide a scientifically sound procedure for formulating adaptive and sustainable nutrient management strategies in other study areas.
Показать больше [+] Меньше [-]Nitrate exposure induces intestinal microbiota dysbiosis and metabolism disorder in Bufo gargarizans tadpoles
2020
Xie, Lei | Zhang, Yuhui | Gao, Jinshu | Li, Xinyi | Wang, Hongyuan
Excess nitrate has been reported to be associated with many adverse effects in humans and experimental animals. However, there is a paucity of information of the effects of nitrate on intestinal microbial community. In this study, the effects of nitrate on development, intestinal microbial community, and metabolites of Bufo gargarizans tadpoles were investigated. B. gargarizans were exposed to control, 5, 20 and 100 mg/L nitrate-nitrogen (NO₃–N) from eggs to Gosner stage 38. Our data showed that the body size of tadpoles significantly decreased in the 20 and 100 mg/L NO₃–N treatment group when compared to control tadpoles. Exposure to 20 and 100 mg/L NO₃–N also caused indistinct cell boundaries and nuclear pyknosis of mucosal epithelial cells in intestine of tadpoles. In addition, exposure to NO₃–N significantly altered the intestinal microbiota diversity and structure. The facultative anaerobic Proteobacteria occupy the niche of the obligately anaerobic Bacteroidetes and Fusobacteria under the pressure of NO₃–N exposure. According to the results of functional prediction, NO₃–N exposure affected the fatty acid metabolism pathway and amino acid metabolism pathway. The whole-body fatty acid components were found to be changed after exposure to 100 mg/L NO₃–N. Therefore, we concluded that exposure to 20 and 100 mg/L NO₃–N could induce deficient nutrient absorption in intestine, resulting in malnutrition of B. gargarizans tadpoles. High levels of NO₃–N could also change the intestinal microbial communities, causing dysregulation of fatty acid metabolism and amino acid metabolism in B. gargarizans tadpoles.
Показать больше [+] Меньше [-]Identifying spatio-temporal dynamics of trace metals in shallow eutrophic lakes on the basis of a case study in Lake Taihu, China
2020
Yang, Jingwei | Holbach, Andreas | Wilhelms, Andre | Krieg, Julia | Qin, Yanwen | Zheng, Binghui | Zou, Hua | Qin, Boqiang | Zhu, Guangwei | Wu, Tingfeng | Norra, Stefan
In shallow eutrophic lakes, metal remobilization is closely related to the resuspension and eutrophication. An improved understanding of metal dynamics by biogeochemical processes is essential for effective management strategies. We measured concentrations of nine metals (Cr, Cu, Zn, Ni, Pb, Fe, Al, Mg, and Mn) in water and sediments during seven periods from 2014 to 2018 in northern Lake Taihu, to investigate the metal pollution status, spatial distributions, mineral constituents, and their interactions with P. Moreover, an automatic weather station and online multi-sensor systems were used to measure meteorological and physicochemical parameters. Combining these measurements, we analyzed the controlling factors of metal dynamics. Shallow and eutrophic northern Lake Taihu presents more serious metal pollution in sediments than the average of lakes in Jiangsu Province. We found chronic and acute toxicity levels of dissolved Pb and Zn (respectively), compared with US-EPA “National Recommended Water Quality Criteria”. Suspended particles and sediment have been polluted in different degrees from uncontaminated to extremely contaminated according to German pollution grade by LAWA (Bund/Länder-Arbeitsgemeinschaft Wasser). Polluted particles might pose a risk due to high resuspension rate and intense algal activity in shallow eutrophic lakes. Suspended particles have similar mineral constituents to sediments and increased with increasing wind velocity. Al, Fe, Mg, and Mn in the sediment were rarely affected by anthropogenic pollution according to the geoaccumulation index. Among them, Mn dynamics is very likely associated with algae. Micronutrient uptake by algal will affect the migration of metals and intensifies their remobilization. Intensive pollution of most particulate metals were in the industrialized and down-wind area, where algae form mats and decompose. Moreover, algal decomposition induced low-oxygen might stimulate the release of metals from sediment. Improving the eutrophication status, dredging sediment, and salvaging cyanobacteria biomass are possible ways to remove or reduce metal contaminations.
Показать больше [+] Меньше [-]Gastrointestinal dysbiosis following diethylhexyl phthalate exposure in zebrafish (Danio rerio): Altered microbial diversity, functionality, and network connectivity
2020
Buerger, Amanda N. | Dillon, David T. | Schmidt, Jordan | Yang, Tao | Zubcevic, Jasenka | Martyniuk, Christopher J. | Bisesi, Joseph H.
Microbiome community structure is intimately involved in key biological functions in the gastrointestinal (GI) system including nutrient absorption and lipid metabolism. Recent evidence suggests that disruption of the GI microbiome is a contributing factor to metabolic disorders and obesity. Poor diet and chemical exposure have been independently shown to cause disruption of the GI microbiome community structure and function. We hypothesized that the addition a chemical exposure to overfeeding exacerbates adverse effects on the GI microbiome community structure and function. To test this hypothesis, adult zebrafish were fed a normal feeding regime (Control), an overfeeding regime (OF), or an overfeeding regime contaminated with diethylhexyl phthalate (OF + DEHP), a suspected obesogen-inducing chemical. After 60 days, fecal matter was collected for sequencing, identification, and quantification of the GI microbiome using the 16s rRNA hypervariable region. Analysis of beta diversity indicated distinct microbial profiles between treatments with the largest divergence between Control and OF + DEHP groups. Based upon functional predictions, OF + DEHP treatment altered carbohydrate metabolism, while both OF and OF + DEHP affected biosynthesis of fatty acids and lipid metabolism. Co-occurrence network analysis revealed decreases in cluster size and a fracturing of the microbial community network into unconnected components and a loss of keystone species in the OF + DEHP treatment when compared to Control and OF treatments. Data suggest that the addition of DEHP in the diet may exacerbate microbial dysbiosis, a consequence that may explain in part its role as an obesogenic chemical.
Показать больше [+] Меньше [-]Growth and physiological responses of tree seedlings to oil sands non-segregated tailings
2020
Zhang, Wen-Qing | Fleurial, Killian | Sherr, Ira | Vassov, Robert | Zwiazek, Janusz J.
Bitumen recovery from oil sands in northeastern Alberta, Canada produces large volumes of tailings, which are deposited in mining areas that must be reclaimed upon mine closure. A new technology of non-segregated tailings (NST) developed by Canadian Natural Resources Limited (CNRL) was designed to accelerate the process of oil sands fine tailings consolidation. However, effects of these novel tailings on plants used for the reclamation of oil sands mining areas remain to be determined. In the present study, we investigated the effects of NST on seedlings of three species of plants commonly planted in oil sands reclamation sites including paper birch (Betula papyrifera), white spruce (Picea glauca) and green alder (Alnus viridis). In the controlled-environment study, we grew seedlings directly in NST and in the two types of reclamation soils with and without added NST and we measured seedling growth, gas exchange parameters, as well as tissue concentrations of selected elements and foliar chlorophyll. White spruce seedlings suffered from severe mortality when grown directly in NST and their needles contained high concentrations of Na. The growth and physiological processes were also inhibited by NST in green alder and paper birch. However, the addition of top soil and peat mineral soil mix to NST significantly improved the growth of plants, possibly due to a more balanced nutrient uptake. It appears that NST may offer some advantages in terms of site revegetation compared with the traditional oil sands tailings that were used in the past. The results also suggest that, white spruce may be less suitable for planting at reclamation sites containing NST compared with the two studied deciduous tree species.
Показать больше [+] Меньше [-]Graphene oxide exposure suppresses nitrate uptake by roots of wheat seedlings
2020
Weng, Yineng | You, Yue | Lu, Qi | Zhong, Ao | Liu, Siyi | Liu, Huijun | Du, Shaoting
Despite the large number of studies reporting the phytotoxicity of graphene-based materials, the effects of these materials on nutrient uptake in plants remain unclear. The present study showed that nitrate concentrations were significantly decreased in the roots of wheat plants treated with graphene oxide (GO) at 200–800 mg L⁻¹. Non-invasive microelectrode measurement demonstrated that GO could significantly inhibit the net NO₃⁻ influx in the meristematic, elongation, and mature zones of wheat roots. Further analysis indicated that GO could be trapped in the root vacuoles, and that the maximal root length and the number of lateral roots were significantly reduced. Additionally, root tip whitening, creases, oxidative stress, and weakened respiration were observed. These observations indicate that GO is highly unfavorable for vigorous root growth and inhibits increase in root uptake area. At the molecular level, GO exposure caused DNA damage and inhibited the expression of most nitrate transporters (NRTs) in wheat roots, with the most significantly downregulated genes being NRT1.3, NRT1.5, NRT2.1, NRT2.3, and NRT2.4. We concluded that GO exposure decreased the root uptake area and root activity, and decreased the expression of NRTs, which may have consequently suppressed the NO₃⁻ uptake rate, leading to adverse nitrate accumulation in stressed plants.
Показать больше [+] Меньше [-]A slight recovery of soils from Acid Rain over the last three decades is not reflected in the macro nutrition of beech (Fagus sylvatica) at 97 forest stands of the Vienna Woods
2016
Berger, Torsten W. | Türtscher, Selina | Berger, Petra | Lindebner, Leopold
Rigorous studies of recovery from soil acidification are rare. Hence, we resampled 97 old-growth beech stands in the Vienna Woods. This study exploits an extensive data set of soil (infiltration zone of stemflow and between trees area at different soil depths) and foliar chemistry from three decades ago. It was hypothesized that declining acidic deposition is reflected in soil and foliar chemistry. Top soil pH within the stemflow area increased significantly by 0.6 units in both H2O and KCl extracts from 1984 to 2012. Exchangeable Ca and Mg increased markedly in the stemflow area and to a lower extent in the top soil of the between trees area. Trends of declining base cations in the lower top soil were probably caused by mobilization of organic S and associated leaching with high amounts of sulfate. Contents of C, N and S decreased markedly in the stemflow area from 1984 to 2012, suggesting that mineralization rates of organic matter increased due to more favorable soil conditions. It is concluded that the top soil will continue to recover from acidic deposition. However, in the between trees areas and especially in deeper soil horizons recovery may be highly delayed. The beech trees of the Vienna Woods showed no sign of recovery from acidification although S deposition levels decreased. Release of historic S even increased foliar S contents. Base cation levels in the foliage declined but are still adequate for beech trees. Increasing N/nutrient ratios over time were considered not the result of marginally higher N foliar contents in 2012 but of diminishing nutrient uptake due to the decrease in ion concentration in soil solution. The mean foliar N/P ratio already increased to the alarming value of 31. Further nutritional imbalances will predispose trees to vitality loss.
Показать больше [+] Меньше [-]