Уточнить поиск
Результаты 1-10 из 74
Exogenous melatonin protects preimplantation embryo development from decabromodiphenyl ethane-induced circadian rhythm disorder and endogenous melatonin reduction
2022
Shi, Feifei | Qiu, Jinyu | Zhang, Shaozhi | Zhao, Xin | Feng, Daofu | Feng, Xizeng
Decabromodiphenyl ethane (DBDPE) is a novel flame retardant that is widely used in plastics, electronic products, building materials and textiles. Our previous studies have revealed the oocyte toxicity of DBDPE, but the effect of DBDPE on preimplantation embryo development has not been reported. Here, we investigated whether and how DBDPE exposure affects preimplantation embryo development. Adult female mice were orally exposed to DBDPE (0, 5, 50, 500 μg/kg bw/day) for 14 days. First, we found that after DBDPE exposure, mice showed obvious circadian rhythm disorder. Moreover, the development of preimplantation embryos was inhibited in DBDPE-exposed mice after pregnancy. Then, we further explored and revealed that DBDPE exposure reduced the endogenous melatonin (MLT) level during pregnancy, thereby inhibiting the development of preimplantation embryos. Furthermore, we discovered that exogenous MLT supplementation (15 mg/kg bw/day) rescued the inhibition of preimplantation embryo development induced by DBDPE, and a mechanistic study demonstrated that exogenous MLT inhibited the overexpression of ROS and DNA methylation at the 5-position of cytosine (5-mC) in DBDPE-exposed preimplantation embryos. Simultaneously, MLT ameliorated the DBDPE-induced mitochondrial dysfunction by increasing the mitochondrial membrane potential (MMP), ATP, and Trp1 expression. Additionally, MLT restored DBDPE-induced changes in zona pellucida (ZP) hardness and trophectoderm (TE) cortical tension. Finally, the protective effect of MLT on embryos ameliorated the adverse reproductive outcomes (dead fetus, fetus with abnormal liver, fetal weight loss) induced by DBDPE. Collectively, DBDPE induced preimplantation embryo damage leading to adverse reproductive outcomes, and MLT has emerged as a potential tool to rescue adverse reproductive outcomes induced by DBDPE.
Показать больше [+] Меньше [-]Enrichment of boron element in follicular fluid and its potential effect on the immune function
2022
Zhang, Guohuan | Wang, Anni | Zhuang, Lili | Wang, Xikai | Song, Ziyi | Liang, Rong | Ren, Mengyuan | Long, Manman | Jia, Xiaoqian | Li, Zhiwen | Su, Shu | Wang, Jiahao | Zhang, Nan | Shen, Guofeng | Wang, Bin
The blood–follicle barrier (BFB) between the blood and follicular fluid (FF) can maintain the microenvironment balance of oocyte. Boron, an exogenous environmental trace element, has been found to possibly play an important role in oocyte maturation. This study aimed to examine the distribution characteristics of boron across the BFB and find the potential effect of boron on FF microenvironment. We analyzed the concentration of boron in paired FF and serum collected from 168 women undergoing in vitro fertilization and embryo transfer in Beijing City and Shandong Province, China. To explore the potential health impact of boron enrichment in oocyte maturation, a global proteomics analysis was conducted to tentatively correlate the protein levels with the boron enrichment. Interestingly, the results showed that the concentration of boron in FF (34.5 ng/mL) was significantly higher than that in serum (22.0 ng/mL), with a median concentration ratio of 1.52. Likewise, the concentrations of boron in FF and serum were positively correlated (r = 0.446), suggesting that boron concentration in serum can represent its concentration in follicular fluid to a large extent.. This is the first time to observe the enrichment of boron in the FF to our knowledge. It is interesting to observe a total of 13 proteins, which mainly belong to immunoglobulin class, were positively correlated with boron concentration in FF. We concluded that boron, as one environmental trace element, was enriched in FF from blood validated by two area in north china, which may be involved in an increased level of immune processes of immunoglobulins.
Показать больше [+] Меньше [-]Glycine ameliorates MBP-induced meiotic abnormalities and apoptosis by regulating mitochondrial-endoplasmic reticulum interactions in porcine oocytes
2022
Gao, Lepeng | Zhang, Chang | Yu, Sicong | Liu, Shuang | Wang, Guoxia | Lan, Hainan | Zheng, Xin | Li, Suo
Monobutyl phthalate (MBP) is the main metabolite of dibutyl phthalate (DBP) in vivo. MBP has a stable structure, can continuously accumulate in living organisms, and has the potentially to harm animal and human reproductive function. In the ovarian follicle microenvironment, MBP may lead to defects in follicular development and steroid production, abnormal meiotic maturation, impaired ovarian function and other reproductive deficits. In this study, SMART-seq was used to investigate the effects of MBP exposure on the in vitro maturation (IVM) and development of porcine oocytes. The results showed that differentially expressed genes after MBP exposure were enriched in the biological processes cytoskeleton, cell apoptosis, endoplasmic reticulum (ER) and mitochondria. Glycine (Gly) improved the developmental potential of porcine oocytes by regulating mitochondrial and ER function. The effect of Gly in protecting oocytes against MBP-induced damage was studied. The results showed that the addition of Gly significantly decreased the rate of MBP-induced spindle abnormalities, decreased the frequency of MBP-induced mitochondria-associated ER membrane (MAM) interactions, and downregulated the protein and gene expression of the linkage molecules Mitofusin 1 (MFN1) and Mitofusin 2 (MFN2) in the MAM. Additionally, treatment with Gly restored the distribution of the 1,4,5-triphosphate receptor 1 (IP₃R1) and voltage-dependent anion channel 1 (VDAC1), further decreasing the intracellular free calcium concentration ([Ca²⁺]ᵢ) levels and mitochondrial Ca²⁺ ([Ca²⁺]ₘ) , increasing the ER Ca²⁺ ([Ca²⁺]ER) levels, and thus significantly increasing the ER levels and mitochondrial membrane potential (ΔΨ m). Gly also decreased the levels of reactive oxygen species (ROS) and increased the levels of Glutathione (GSH), oocyte apoptosis-related indicators (Caspase-3 activity and Annexin V) and oocyte apoptosis-related genes (BAX, Caspase 3 and AIFM1). Our results suggest that Gly can ameliorate microtubule cytoskeleton abnormalities and improve oocyte maturation by reducing the defective mitochondrial–ER interactions caused by MBP exposure in vitro.
Показать больше [+] Меньше [-]Parental plasma concentrations of perfluoroalkyl substances and In Vitro fertilization outcomes
2021
Ma, Xueqian | Cui, Long | Chen, Lin | Zhang, Jun | Zhang, Xiaohui | Kang, Quanmin | Jin, Fan | Ye, Yinghui
Perfluoroalkyl substances (PFAS) are known to be endocrine-disrupting compounds, but are nevertheless widely used in consumer and industrial products and have been detected globally in human and wildlife. Data from animal and epidemiological studies suggest that PFAS may affect human fertility. This led us to consider whether maternal or paternal plasma PFAS had effects on in vitro fertilization (IVF) outcomes. The study population consisted of 96 couples who underwent IVF treatment in 2017 due to tubal factor infertility. The concentrations of 10 PFAS in blood samples from both male and female partners were measured. Poisson regression with log link was performed to evaluate the association between the tertiles of PFAS concentrations and numbers of retrieved oocytes, mature oocytes, two-pronuclei (2 PN) zygotes, and good-quality embryos, while multiple linear regression models were used to investigate the correlation between plasma PFAS and semen parameters. Multivariable logistic regression was used to evaluate the association between the tertiles of PFAS concentrations and clinical outcomes. It was found that maternal plasma concentrations of perfluorooctanoic acid (PFOA) were negatively associated with the numbers of retrieved oocytes (pₜᵣₑₙd = 0.023), mature oocytes (pₜᵣₑₙd = 0.015), 2 PN zygotes (pₜᵣₑₙd = 0.014), and good-quality embryos (pₜᵣₑₙd = 0.012). Higher paternal plasma PFOA concentrations were found to be significantly associated with reduced numbers of 2 PN zygotes (pₜᵣₑₙd = 0.047). None of the maternal or paternal PFAS were significantly associated with the probability of implantation, clinical pregnancy, or live birth. To our knowledge, the present study is the first to assess the association between parental exposure to PFAS and IVF outcomes. Our results suggest the potential reproductive effects of PFAS on both men and women, and that exposure to PFAS may negatively affect IVF outcomes. Future studies, particularly with large sample size cohorts, are needed to confirm these findings.
Показать больше [+] Меньше [-]Iodoacetic acid disrupts mouse oocyte maturation by inducing oxidative stress and spindle abnormalities
2021
Jiao, Xiaofei | Gonsioroski, Andressa | Flaws, Jodi A. | Qiao, Huanyu
Disinfection by-products (DBPs) are compounds produced during the water disinfection process. Iodoacetic acid (IAA) is one of the unregulated DBPs in drinking water, with potent cytotoxicity and genotoxicity in animals. However, whether IAA has toxic effects on oocyte maturation remains unclear. Here, we show that IAA exposure resulted in metaphase I (MI) arrest and polar-body-extrusion failure in mouse oocytes, indicating that IAA had adverse effects on mouse oocyte maturation in vitro. Particularly, IAA treatment caused abnormal spindle assembly and chromosome misalignment. Previous studies reported that IAA is a known inducer of oxidative stress in non-germline cells. Correspondingly, we found that IAA exposure increased the reactive oxygen species (ROS) levels in oocytes in a dose-dependent manner, indicating IAA exposure could induce oxidative stress in oocytes. Simultaneously, DNA damage was also elevated in the nuclei of these IAA-exposed mouse oocytes, evidenced by increased γ-H2AX focus number. In addition, the un-arrested oocytes entered metaphase II (MII) with severe defects in spindle morphologies and chromosome alignment after 14-h IAA treatment. An antioxidant, N-acetyl-L-cysteine (NAC), reduced the elevated ROS level and restored the meiotic maturation in the IAA-exposed oocytes, which indicates that IAA-induced maturation failure in oocytes was mainly mediated by oxidative stress. Collectively, our results indicate that IAA exposure interfered with mouse oocyte maturation by elevating ROS levels, disrupting spindle assembly, inducing DNA damage, and causing MI arrest.
Показать больше [+] Меньше [-]Xenopus in revealing developmental toxicity and modeling human diseases
2021
Gao, Juanmei | Shen, Wanhua
The Xenopus model offers many advantages for investigation of the molecular, cellular, and behavioral mechanisms underlying embryo development. Moreover, Xenopus oocytes and embryos have been extensively used to study developmental toxicity and human diseases in response to various environmental chemicals. This review first summarizes recent advances in using Xenopus as a vertebrate model to study distinct types of tissue/organ development following exposure to environmental toxicants, chemical reagents, and pharmaceutical drugs. Then, the successful use of Xenopus as a model for diseases, including fetal alcohol spectrum disorders, autism, epilepsy, and cardiovascular disease, is reviewed. The potential application of Xenopus in genetic and chemical screening to protect against embryo deficits induced by chemical toxicants and related diseases is also discussed.
Показать больше [+] Меньше [-]Constant light exposure causes oocyte meiotic defects and quality deterioration in mice
2020
Zhang, Huiting | Yan, Ke | Sui, Lumin | Nie, Junyu | Cui, Kexin | Liu, Jiahao | Zhang, Hengye | Yang, Xiaogan | Lu, Kehuan | Liang, Xingwei
Artificial light at night (ALAN) exposes us to prolonged illumination, that adversely affects female reproduction. However, it remains to be clarified how prolonged light exposure affects oocyte meiotic maturation and quality. To this end, we exposed female mice to a constant light (CL) of 250 lux for different durations. Our findings showed that CL exposure for 7 weeks reduced the oocyte maturation rate. Meanwhile, CL exposure caused greater abnormalities in spindle assembly and chromosome alignment and a higher rate of oocyte aneuploidy than the regular light dark cycle. CL exposure also induced oxidative stress and caused mitochondrial dysfunction, which resulted in oocyte apoptosis and autophagy. Notably, our results showed that CL exposure reduced the levels of α-tubulin acetylation, DNA methylation at 5 mC, RNA methylation at m⁶A and histone methylation at H3K4me2 but increased the levels of histone methylation at H3K27me2 in oocytes. In summary, our findings demonstrate that constant bright light exposure causes oocyte meiotic defects and reduces cytoplasmic quality. These results extend the current understanding of ALAN-mediated defects in female reproduction.
Показать больше [+] Меньше [-]Triclocarban exposure affects mouse oocyte in vitro maturation through inducing mitochondrial dysfunction and oxidative stress
2020
Ding, Zhi-Ming | ʻAdīl, Jamīl Aḥmad | Meng, Fei | Chen, Fan | Wang, Yong-Shang | Zhao, Xin-Zhe | Zhang, Shou-Xin | Miao, Yi-Liang | Xiong, Jia-Jun | Huo, Li-Jun
Triclocarban (TCC), a broad-spectrum lipophilic antibacterial agent, is the main ingredient of personal and health care products. Nonetheless, its ubiquitous presence in the environment has been established to negatively affect the reproduction in humans and animals. In this work, we studied the possible toxic effects of TCC on mouse oocytes maturation in vitro. Our findings revealed that TCC-treated immature mouse oocytes had a significantly reduced rate of polar body extrusion (PBE) compared to that of control. Further study demonstrated that the cell cycle progression and cytoskeletal dynamics were disrupted after TCC exposure, which resulted in the continuous activation of spindle assembly checkpoint (SAC). Moreover, TCC-treated oocytes had mitochondrial damage, reduced ATP content, and decreased mitochondrial membrane potential (MMP). Furthermore, TCC exposure induced oxidative stress and subsequently triggered early apoptosis in mouse oocytes. Besides, the levels of histone methylation were also affected, as indicated by increased H3K27me2 and H3K27me3 levels. In summary, our results revealed that TCC exposure disrupted mouse oocytes maturation through affecting cell cycle progression, cytoskeletal dynamics, oxidative stress, early apoptosis, mitochondria function, and histone modifications in vitro.
Показать больше [+] Меньше [-]Reprotoxicity of glyphosate-based formulation in Caenorhabditis elegans is not due to the active ingredient only
2019
Jacques, Mauricio Tavares | Bornhorst, Julia | Soares, Marcell Valandro | Schwerdtle, Tanja | Garcia, Solange | Ávila, Daiana Silva
Pesticides guarantee us high productivity in agriculture, but the long-term costs have proved too high. Acute and chronic intoxication of humans and animals, contamination of soil, water and food are the consequences of the current demand and sales of these products. In addition, pesticides such as glyphosate are sold in commercial formulations which have inert ingredients, substances with unknown composition and proportion. Facing this scenario, toxicological studies that investigate the interaction between the active principle and the inert ingredients are necessary. The following work proposed comparative toxicology studies between glyphosate and its commercial formulation using the alternative model Caenorhabditis elegans. Worms were exposed to different concentrations of the active ingredient (glyphosate in monoisopropylamine salt) and its commercial formulation. Reproductive capacity was evaluated through brood size, morphological analysis of oocytes and through the MD701 strain (bcIs39), which allows the visualization of germ cells in apoptosis. In addition, the metal composition in the commercial formulation was analyzed by ICP-MS. Only the commercial formulation of glyphosate showed significant negative effects on brood size, body length, oocyte size, and the number of apoptotic cells. Metal analysis showed the presence of Hg, Fe, Mn, Cu, Zn, As, Cd and Pb in the commercial formulation, which did not cause reprotoxicity at the concentrations found. However, metals can bioaccumulate in soil and water and cause environmental impacts. Finally, we demonstrated that the addition of inert ingredients increased the toxic profile of the active ingredient glyphosate in C. elegans, which reinforces the need of components description in the product labels.
Показать больше [+] Меньше [-]Dibutyl phthalate exposure disrupts the progression of meiotic prophase I by interfering with homologous recombination in fetal mouse oocytes
2019
Tu, Zhihan | Mu, Xinyi | Chen, Xuemei | Geng, Yanqing | Zhang, Yan | Li, Qingying | Gao, Rufei | Liu, Taihang | Wang, Yingxiong | He, Junlin
Dibutyl phthalate (DBP), one of the most widely used plasticizers, is a known environmental endocrine disruptor that impairs male and female fertility. In this study, oral administration of DBP was given to pregnant mice on 14.5 days post coitus (dpc) for 3 days; and additionally, DBP was added into the culture of 14.5 dpc fetal ovaries for 3 days. DBP exposure during gestation disturbed the progression of meiotic prophase I of mouse oocytes, specifically from the zygotene to pachytene stages. Meanwhile, the DBP-exposed pachytene oocytes showed increased homologous recombination sites and unrepaired DNA damage. Furthermore, DBP caused DNA damage by increasing oxidative stress, decreased the expression of multiple critical meiotic regulators, and consequently induced oocyte apoptosis. Moreover, the effect of DBP on meiosis I prophase involved estrogen receptors α and β. Collectively, these results demonstrated a set of meiotic defects in DBP-exposed fetal oocytes. As aberrations in homologous recombination can result in aneuploid gametes and embryos, this study provides new support for the deleterious effects of phthalates.
Показать больше [+] Меньше [-]