Уточнить поиск
Результаты 1-10 из 114
Distribution and potential ecological risk of 50 phenolic compounds in three rivers in Tianjin, China Полный текст
2018
Zhong, Wenjue | Wang, Donghong | Wang, Zijian
Phenolic compounds widely exist in the surface water of many countries; however, few studies have simultaneously analyzed and evaluated broad-spectrum phenolic compounds in various components of the water environment. Therefore this study analyzed the distribution and potential ecological risk of 50 phenolic compounds in the surface water, sediment and suspended particulate matter of three important rivers in Tianjin, the main heavy industry city with high pollution in China. The qualitative results show that phenolic pollution existed extensively in the three rivers and the kinds of phenolic compounds in the water were relatively higher than in both sediment and suspended particulate matter. The quantitative results show that the phenolic pollution in the wet-season samples was serious than dry-season samples. Meanwhile, total concentrations of phenolic compounds in three components from the Dagu Drainage River (DDR) were all much higher than those in the Beitang Drainage River (BDR) and Yongdingxin River (YDXR). The highest total concentrations of phenolic compounds in three components all appeared in wet-season samples in DDR, and the highest total concentration was 1354 μg/L in surface water, 719 μg/kg dw in suspended particulate matter and 2937 μg/kg dw in sediment, respectively. The ecological risk of phenolic compounds in surface water was evaluated using the quotient method, and phenolic compounds with risk quotient (RQ) > 1 (RQ > 0.3 for YDXR) were identified as priority pollutants. Five kinds of phenolic compounds were identified as priority phenolic compounds in BDR, and the order of risk was 2-cresol > 2,4-xylenol > 2-sec-butylphenol > 2-naphthol > 3-cresol. Six kinds of phenolic compounds were identified as priority phenolic compounds in DDR, and the order of risk was 2-naphthol > p-chloro-m-xylenol > 4-cresol > 3-cresol > 2,4-xylenol > 2,3,6-Trimethylphenol. In YDXR, only phenol, 2-naphthol and 2,4-xylenol were identified as priority phenolic compounds.
Показать больше [+] Меньше [-]Ecological risk of estrogenic endocrine disrupting chemicals in sewage plant effluent and reclaimed water Полный текст
2013
Sun, Yan | Huang, Huang | Sun, Ying | Wang, Chao | Shi, Xiao-Lei | Hu, Hong-Ying | Kameya, Takashi | Fujie, Koichi
The long-term ecological risk of micropollutants, especially endocrine disrupting chemicals (EDCs) has threatened reclaimed water quality. In this study, estrogenic activity and ecological risk of eight typical estrogenic EDCs in effluents from sewage plants were evaluated. The estrogenic activity analysis showed that steroidal estrogens had the highest estrogenic activity (ranged from 10−1 to 103 ng-E2/L), phenolic compounds showed weaker estrogenic activity (mainly ranged from 10−3 to 10 ng-E2/L), and phthalate esters were negligible. The ecological risk of the estrogenic EDCs which was characterized by risk quotient ranged from 10−4 to 103, with an order in descending: steroids estrogens, phenolic compounds and phthalate esters. The eight estrogenic EDCs were scored and sorted based on the comparison of the estrogenic activity and the ecological risk, suggesting that 17α-ethynylestradiol (EE2), estrone (E1) and estradiol (E2) should be the priority EDCs to control in municipal sewage plants.
Показать больше [+] Меньше [-]Comparison of competitive and synergetic adsorption of three phenolic compounds on river sediment Полный текст
2011
Gao, Peng | Feng, Yujie | Zhang, Zhaohan | Liu, Junfeng | Ren, Nanqi
Knowledge of toxic chemical sorption by soil/sediment is critical for environmental risk assessment of toxic chemicals, especially for the multi-sorbate system in river ecosystem. Sorption characteristics of 2, 4-Dichlorophenol, 2, 4-Dinitrophenol and 2, 4-Dimethyphenol on sediment were investigated. Adsorption isotherms in single- and multi-sorbate systems fitted well the Freundlich model. The adsorption effects were different among three selected phenolic compounds in single- and multi-sorbate systems. The synergetic affect that 2, 4-Dinitrophenol and 2, 4-Dimethyphenol bring to 2, 4-Dichlorophenol can be explained by the compression of double electronic layer and the charge neutrality. Adsorption kinetic results showed that pseudo-second-order model can be used to describe the experimental data and the adsorption affinity of phenolic compounds influenced greatly by the adsorption velocity. The present study suggests that the fate and transport of emerging pollutants such as phenolic compounds could be affected in the presence of different hydrophobic pollutants in aquatic systems.
Показать больше [+] Меньше [-]De novo transcriptomic analysis predicts the effects of phenolic compounds in Ba River on the liver of female sharpbelly (Hemiculter lucidus) Полный текст
2020
Guo, J. (Jiahua) | Mo, Jiezhang | Zhao, Qian | Han, Qizhi | Kanerva, Mirella | Iwata, Hisato | Li, Qi
This work aimed at predicting the toxic effects of phenolic compounds in Ba River on the health of female sharpbelly (Hemiculter lucidus) by the de novo transcriptomic analysis of the liver. Sharpbelly, a native fish living in freshwater ecosystem of East Asia, were sampled upstream, near, and downstream of a wastewater discharge to the Ba river. Based on the occurrence of bisphenol A (BPA), nonylphenol (NP), and 4-tert-octylphenol (4-t-OP) in the water and fish sampled from each site, up-, mid-, and down-stream were interpreted as control, high, and low treatment groups, respectively. In the mid-stream group the Fulton’s condition factor (CF) and body weight were remarkably increased by approximate 20%; the gonado-somatic index (GSI) and hepatosomatic index (HSI) in mid-stream fish showed a similar increasing trend but lacking of statistical difference. Exposure to wastewater effluent caused 160 and 162 differentially expressed genes (DEGs) in up-mid and down-mid stream groups, respectively. Two sets of DEGs were primarily enriched in the signaling pathways of drug metabolism, endocrine system, cellular process, and lipid metabolism in the mid-stream sharpbelly, which may alter the fish behavior, disrupt the reproductive function, and lead to hypothyroidism, hepatic steatosis, etc. Taken together, our results linked the disrupted signaling pathways with activities of phenolic compounds to predict the potential effects of wastewater effluent on the health of wild fish.
Показать больше [+] Меньше [-]Enhancement of polyphenolic metabolism as an adaptive response of lettuce (Lactuca sativa) roots to aluminum stress Полный текст
2020
Chen, Yao | Huang, Lin | Liang, Xin | Dai, Peibin | Zhang, Yuxue | Li, Baohai | Lin, Xianyong | Sun, Chengliang
Polyphenols, pivotal secondary metabolites, are involved in plant adaption to abiotic stresses. Here, we investigated the role and metabolism profile of polyphenols under aluminum (Al) stress in different lettuce genotypes grown in 0.5 mM CaCl₂ solution with AlCl₃ (pH = 4.5). The complementary use of high-resolution mass spectrometry and quantitative biochemical approaches allowed the characterization of total and unique phenols, as well as their roles in Al tolerance. By comparing the most tolerant and sensitive genotype, 8 polyphenols, including 4 phenolic acids, 2 flavonoids, 1 xanthone and 1 unknown compound, were identified in the roots of the tolerant genotype. The total phenolic and flavonoid contents significantly increased in the tolerant genotype under Al stress. Seedlings with more phenolic accumulation usually performed greater Al tolerance. Meanwhile, principal enzymes related to phenolic biosynthesis significantly increased in roots of the tolerance genotype after Al treatment, with phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase, and 4-coumarate coenzyme A ligase increased by 16, 18 and 30%, respectively. The elevated total phenolics were significantly suppressed by AIP, a highly specific PAL inhibitor. Consequently, the antioxidant capacity was inhibited, leading to lettuce sensitivity to Al stress. These results clearly suggested the enhancement of unique polyphenolic biosynthesis as an adaptive strategy of lettuce to Al stress by protecting plants from oxidative stress.
Показать больше [+] Меньше [-]The evaluation of endocrine disrupting effects of tert-butylphenols towards estrogenic receptor α, androgen receptor and thyroid hormone receptor β and aquatic toxicities towards freshwater organisms Полный текст
2018
Wang, Jiaying | Wang, Jingpeng | Liu, Jinsong | Li, Jianzhi | Zhou, Lihong | Zhang, Huanxin | Sun, Jianteng | Zhuang, Shulin
The phenolic compounds have posed public concern for potential threats to human health and ecosystem. Tert-butylphenols (TBPs), as one group of emerging contaminants, showed potential endocrine disrupting effects and aquatic toxicities. In the present study, we detected concentrations of 2,4-DTBP ranging from <0.001 to 0.057 μg/L (detection limit: 0.001 μg/L) in drinking water source from the Qiantang River in East China in April 2016. The endocrine disrupting effects of 2-TBP, 2,4-DTBP and 2,6-DTBP toward human estrogen receptor α (ERα), androgen receptor (AR) and thyroid hormone receptor β (TRβ) were evaluated using human recombinant two-hybrid yeast bioassay. Their aquatic toxicities were investigated with indicator organisms including Photobacterium phosphoreum, Vibrio fischeri and freshwater green alga Chlamydomonas reinhardtii. 2-TBP and 2,4-DTBP exhibited moderate antagonistic effects toward human ERα and AR in a concentration-dependent manner. 2-TBP significantly inhibited the light emission of P. phosphoreum. 2-TBP, 2,4-DTBP and 2,6-DTBP significantly inhibited the growth of C. reinhardtii and reduced the chlorophyll content. Our results suggest the potential adverse effects of TBPs on human health and aquatic organisms. The data will facilitate further risk assessment of TBPs and related contaminants.
Показать больше [+] Меньше [-]Characterization and influence of biochars on nitrous oxide emission from agricultural soil Полный текст
2013
Wang, Zhenyu | Zheng, Hao | Luo, Ye | Deng, Xia | Herbert, Stephen | Xing, Baoshan
Extensive use of biochar to mitigate N2O emission is limited by the lack of understanding on the exact mechanisms altering N2O emissions from biochar-amended soils. Biochars produced from giant reed were characterized and used to investigate their influence on N2O emission. Responses of N2O emission varied with pyrolysis temperature, and the reduction order of N2O emission by biochar (BC) was: BC200 ≈ BC600 > BC500 ≈ BC300 ≈ BC350 > BC400. The reduced emission was attributed to enhanced N immobilization and decreased denitrification in the biochar-amended soils. The remaining polycyclic aromatic hydrocarbons (PAHs) in low-temperature biochars (300–400 °C) played a major role in reducing N2O emission, but not for high-temperature biochars (500–600 °C). Removal of phenolic compounds from low-temperature (200–400 °C) biochars resulted in a surprising reduction of N2O emission, but the mechanism is still unknown. Overall, adding giant reed biochars could reduce N2O evolution from agricultural soil, thus possibly mitigating global warming.
Показать больше [+] Меньше [-]Digestive utilization of ozone-exposed forage by rabbits (Oryctolagus cuniculus) Полный текст
2012
Gilliland, Nicholas J. | Chappelka, Arthur H. | Muntifering, Russell B. | Booker, Fitzgerald L. | Ditchkoff, Stephen S.
A mixture of common Southern Piedmont (USA) grassland species (Lolium arundinacea, Paspalum dilatatum, Cynodon dactylon and Trifolium repens) was exposed to O₃ [ambient (non-filtered; NF) and twice-ambient (2X) concentrations] and fed to individually caged New Zealand white rabbits (Oryctolagus cuniculus) in a digestibility experiment. Forages and feed refusals were analyzed for concentrations of total cell wall constituents, lignin, crude protein, and soluble and hydrolyzable phenolic fractions. Neutral detergent fiber and acid detergent fiber digestibility by rabbits were significantly lower for 2X than NF forage. Decreased digestibility could not be attributed to lignin concentrations, but was associated with increased concentrations of acid-hydrolyzable and saponifiable phenolics. Exposure of forage to elevated O₃ resulted in decreased digestible dry matter intake by rabbits. Elevated O₃ concentrations could be expected to have a negative impact on forage quality, resulting in decreased nutrient utilization by mammalian herbivores in Southern Piedmont grasslands under projected future climate scenarios.
Показать больше [+] Меньше [-]High nitrogen and elevated [CO₂] effects on the growth, defense and photosynthetic performance of two eucalypt species Полный текст
2012
Novriyanti, Eka | Watanabe, Makoto | Kitao, Mitsutoshi | Utsugi, Hajime | Uemura, Akira | Koike, Takayoshi
Atmospheric nitrogen deposition and [CO₂] are increasing and represent environmental problems. Planting fast-growing species is prospering to moderate these environmental impacts by fixing CO₂. Therefore, we examined the responses of growth, photosynthesis, and defense chemical in leaves of Eucalyptus urophylla (U) and the hybrid of E. deglupta × E. camadulensis (H) to different CO₂ and nitrogen levels. High nitrogen load significantly increased plant growth, leaf N, net photosynthetic rate (Agᵣₒwₜₕ), and photosynthetic water use efficiency (WUE). High CO₂ significantly increased Agᵣₒwₜₕ, photosynthetic nitrogen use efficiency (PNUE) and WUE. Secondary metabolite (SM, i.e. total phenolics and condensed tannin) was specifically altered; as SM of U increased by high N load but not by elevated [CO₂], and vice versa for SM of H.
Показать больше [+] Меньше [-]Urbanization-related changes in European aspen (Populus tremula L.): Leaf traits and litter decomposition Полный текст
2010
Nikula, Suvi | Vapaavuori, Elina | Manninen, Sirkku
Urbanization-related changes in European aspen (Populus tremula L.): Leaf traits and litter decomposition Полный текст
2010
Nikula, Suvi | Vapaavuori, Elina | Manninen, Sirkku
We investigated foliar and litter responses of European aspen (Populus tremula L.) to urbanization, including factors such as increased temperature, moisture stress and nitrogen (N) deposition. Leaf samples were collected in 2006-2008 from three urban and three rural forest stands in the Helsinki Metropolitan Area, southern Finland, and reciprocal litter transplantations were established between urban and rural sites. Urban leaves exhibited a higher amount of epicuticular waxes and N concentration, and a lower C:N ratio than rural ones, but there was no difference in specific leaf area. Urban litter had a slightly higher N concentration, lower concentrations of lignin and total phenolics, and was more palatable to a macrofaunal decomposer. Moreover, litter decay was faster at the urban site and for urban litter. Urbanization thus resulted in foliar acclimatization in terms of increased amount of epicuticular waxes, as well as in accelerated decomposition of the N-richer leaf litter.
Показать больше [+] Меньше [-]Urbanization-related changes in European aspen (Populus tremula L.): Leaf traits and litter decomposition Полный текст
2010
Nikula, S. | Vapaavuori, E. | Manninen, S. | Metsäntutkimuslaitos