Уточнить поиск
Результаты 1-8 из 8
Elimination and ecotoxicity evaluation of phthalic acid esters from textile-dyeing wastewater
2017
Liang, Jieying | Ning, Xun-an | Kong, Minyi | Liu, Daohua | Wang, Guangwen | Cai, Haili | Sun, Jian | Zhang, Yaping | Lu, Xingwen | Yuan, Yong
Phthalic acid esters (PAEs), presented in fabrics, surfactants and detergents, were discharged into the ecosystem during textile-dyeing wastewater treatment and might have adverse effects on water ecosystems. In this study, comprehensive investigations of the content and component distributions of 12 PAEs across different units of four textile-dyeing wastewater plants were carried out in Guangdong Province, China. Ecotoxicity assessments were also conducted based on risk quotients (RQs). On average, 93.54% TOC and 80.14% CODCr were removed following treatment at the four plants. The average concentration of Σ12PAEs in effluent was 11.78 μg/L. PAEs with highest concentrations were dimethylphthalate (6.58 μg/L), bis(2-ethylhexyl)phthalate (2.23 μg/L), and dibutylphthalate (1.98 μg/L). The concentrations of the main toxic PAEs were 2.23 μg/L (bis(2-ethylhexyl)phthalate), 0.19 μg/L (diisononylphthalate) and 0.67 μg/L (dinoctylphthalate); corresponding RQs were 1.4, 0.55, and 0.54 for green algae, respectively. The RQs of Σ12PAEs in effluent of the four plants were >0.1, indicating that Σ12PAEs posed medium or higher ecological risk to fish, Daphnia and green algae. Physicochemical-biochemical system was found to be more effective than biochemical-physicochemical system for TOC and CODCr removal, because pre-physicochemical treatment helped to remove macromolecular organic substances, and reduced the competition with other pollutants during biochemical treatment. However, biochemical-physicochemical system was more effective than physicochemical-biochemical system for elimination of PAEs and for detoxification, since the biochemical treatment might produce the toxic PAEs that could helpfully be settled by post-physicochemical treatment. Moreover, ecotoxicity evaluation was recommended for current textile-dyeing wastewater treatment plants.
Показать больше [+] Меньше [-]Occurrence of phthalic acid esters in source waters: a nationwide survey in China during the period of 2009–2012
2014
Liu, Xiaowei | Shi, Jianghong | Bo, Ting | Zhang, Hui | Wu, Wei | Chen, Qingcai | Zhan, Xinmin
The first nationwide survey of six phthalic acid esters (PAEs) (diethyl phthalate (DEP); dimethyl phthalate (DMP); di-n-butyl phthalate (DBP); butyl benzyl phthalate (BBP); bis(2-ethylhexyl) phthalate (DEHP); di-n-octyl phthalate (DnOP)) in source waters was conducted in China. The results showed these PAEs were ubiquitous in source waters. DBP and DEHP were the most frequently detected with high concentrations ranging nd–1.52 μg/L and nd–6.35 μg/L, respectively. These PAEs concentrations (except DBP) in surface water (rivers, lakes and reservoirs) were generally higher than those in groundwater; DBP had high concentrations in groundwater in Northeast China (Liao River Basin) and North China (Hai River Basin). Their concentrations in the northern regions were generally higher than those in the southern and eastern regions; particularly, in North China. Three short-chain PAEs (DMP, DEP and DBP) were detected with high concentrations in Hai River Basin, Pearl River Basin and Yellow River Basin.
Показать больше [+] Меньше [-]Accumulation of phthalates under high versus low nitrogen addition in a soil-plant system with sludge organic fertilizers instead of chemical fertilizers
2021
Hui, Kunlong | Tang, Jun | Cui, Yini | Xi, Beidou | Tan, Wenbing
Nitrogen is the main nutrient in soil. The long-term addition of N leads to changes in the soil dissolved organic matter (DOM) and other quality indicators, which affects the adsorption and accumulation of organic pollutants. The use of organic fertilizer is important for the development of green agriculture. However, organic fertilizers (especially sludge organic fertilizers (SOFs) contain phthalates (PAEs) that may accumulate in the soil and result in environmental contamination. How this accumulation response varies with the magnitude of long-term N addition, especially in different soil layer profiles, remains unclear. Here, changes in the content of PAEs in the soil–plant system without and after SOFs application were studied through field experiments in soils with different N addition backgrounds (CK, N1, N3 (0, 100, 300 kg N ha⁻¹ yr⁻¹ respectively)). Our results showed that the application of SOFs increase the accumulation of PAEs in soil profiles and plant systems, increasing human health risks. The content of Σ₅PAEs in the topsoil increased from 0.96 ± 0.10 to 1.86 ± 0.09 mg kg⁻¹. Moreover, under a high N addition background and SOFs application, the characteristics of soil DOM change, and the accumulation of PAEs in soil was nearly 30% higher compared with the low N group. Some suggestions such as removing PAEs from SOFs during preparation, conducting soil surveys before applying PAEs, and using soil amendments, which are provided for optimizing the trialability and environmental safety of SOFs application.
Показать больше [+] Меньше [-]Effect of dibutyl phthalate on microbial function diversity and enzyme activity in wheat rhizosphere and non-rhizosphere soils
2020
Gao, Minling | Dong, Youming | Zhang, Ze | Song, Zhengguo
The pollution of farm soils by the plasticizer dibutyl phthalate (DBP) should be researched owing to the extensive use of plastic film. We investigated the influence of DBP on microbial communities and enzyme activities in rhizosphere and non-rhizosphere soil during the different growth stages of wheat and determined the response through simulations. The results indicated that protease, polyphenol oxidase, and β-glucosidase activity in soil decreased with increasing DBP dosage, while dehydrogenase, urease, and acid phosphatase activities increased. Moreover, the effects of DBP on soil enzyme activity gradually weakened with DBP degradation. Dibutyl phthalate has a certain inhibitory effect on the activity, diversity, and heterogeneity of microorganisms in soil. In addition, DBP can increase the utilization of amines and carboxylic acids and decrease the utilization of carbohydrates and amino acids by soil microorganisms. According to the Gaussian and molecular docking analysis, we considered that monobutyl phthalate and DBP could affect the utilization of amino acids by Proteobacteria. The enzyme activity, microbial activity, and heterogeneity of rhizosphere soil were higher than those of non-rhizosphere soil. Microbial carbon source utilization in rhizosphere and non-rhizosphere soils depends on wheat growth, soil type, and DBP dosage. Owing to the widespread presence of DBP in agriculture, negative effects of phthalic acid esters should be considered in relation to soil quality and food safety in future.
Показать больше [+] Меньше [-]Plastic film mulching increased the accumulation and human health risks of phthalate esters in wheat grains
2019
Shi, Mei | Sun, Yingying | Wang, Zhaohui | He, Gang | Quan, Hanxiang | He, Hongxia
Plastic film mulching is a common practice to increase crop yield in dryland, while the wide use of plastic film has resulted in ubiquitous phthalate esters (PAEs) releasing into the soil. PAEs in soil could be taken up and accumulated by dietary intake of food crops such as wheat, thus imposing health risks to residents. In the present study, samples from a long-term location-fixed field experiment were examined to clarify the accumulation of PAEs in soil and wheat, and to assess the human health risks from PAEs via dietary intake of wheat grain under plastic film mulching cultivation in dryland. Results showed that concentrations of PAEs in grains from mulching plots ranged from 4.1 to 12.6 mg kg−1, which were significantly higher than those in the control group. There was a positive correlation for the PAE concentrations between wheat grains and field soils. Concentrations of PAEs in the soil were in the range of 1.8–3.5 mg kg−1 for the mulching treatment, and 0.9–2.7 mg kg−1 for the control group. Di-n-butyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) were detected in all soil and grain samples, and DEHP was found to be the dominant PAE compound in grains. Based on DEHP concentrations in wheat grains, the values of carcinogenic risk for adults were higher than the recommended value 10−4. Results indicated that wheat grains from film mulching plots posed a considerable non-carcinogenic risk to residents, with children being the most sensitive resident group. Findings of this work call the attention to the potential pollution of grain crops growing in the plastic film mulching crop production systems.
Показать больше [+] Меньше [-]Adsorption and desorption of phthalic acid esters on graphene oxide and reduced graphene oxide as affected by humic acid
2018
Lü, Lun | Wang, Jun | Chen, Baoliang
The implications of humic acid (HA) regarding surface properties of graphene materials and their interactions with phthalic acid esters (PAEs) are not vivid. We report the role of HA on graphene oxide (GO) and reduced graphene oxide (RGO) for sorption-desorption behavior of PAEs. Besides higher surface area and pore volume, the hydrophobic π-conjugated carbon atoms on RGO ensured prominent adsorption capacity towards PAEs in comparison to hydrophilic GO, highlighting the hydrophobic effect. After adjusting for the hydrophobic effect by calculating the hexadecane-water partition coefficient (KHW) normalized adsorption coefficient (Kd/KHW), the dimethyl phthalate (DMP) molecule portrayed a higher adsorption affinity towards RGO by π-π electron donor–acceptor (EDA) interaction for active sites on graphene interface via sieving effect. In contrast to RGO, the weak π-π EDA interactions and H-bonding was observed between the carbonyl groups of PAEs and oxygen containing functional groups on GO. There was no obvious change in morphologies of GO and RGO before and desorption as revealed by SEM and TEM images, as desorption hysteresis did not occur in all conditions. The presence of HA also resulted in shielding effect thereby decreasing the adsorption rate and capacity of diethyl phthalate (DEP) on GO and RGO, while it had little effect on DMP, probably due to the adsorbed HA as new active sites. The desorption of DMP and DEP on RGO in presence of HA was quick and enhanced. These results should be important for evaluating the fate and health risk of graphene materials and PAEs in the environment.
Показать больше [+] Меньше [-]Spatial distribution and ecological risk assessment of phthalic acid esters and phenols in surface sediment from urban rivers in Northeast China
2016
Li, Bin | Liu, Ruixia | Gao, Hongjie | Tan, Ruijie | Zeng, Ping | Song, Yonghui
Concentration and spatial distribution of six phthalic acid esters (PAEs) and eight phenols in sediments of urban rivers, namely the Xi River (XR) and Pu River (PR) in Shenyang city, Northeast China were investigated and the ecological risk of these target pollutants was assessed based on the risk quotient (RQ) approach. Target PAEs and phenols were detected in most of sediment samples collected from the XR and PR. The concentrations of total PAEs in sediments varied from 22.4 to 369 μg/g dw in the XR and 3.71–46.9 μg/g dw in the PR. The levels of phenols ranged from 2.72 to 106 μg/g dw in the XR and 0.811–25.0 μg/g dw in the PR, respectively. The dominant pollutants in both XR and PR were DEHP, phenol and 4-methylphnol. The sampling locations XR1-3 in the XR suffered severe contamination from PAEs and phenols. The sites PR1 and PR6 were heavily polluted by phenols and PAEs, respectively. Almost all target PAEs and phenolic compounds in sediment of the XR exhibited medium or high ecological risk to organisms and the ecological risk in the PR mainly originated from PEAs, phenol and 4-methylphenol. These results would provide guidance for individual pollutant control and indicate that it is imperative to take some effective measures to reduce the pollution of those contaminants.
Показать больше [+] Меньше [-]Occurrence and seasonal variation of plasticizers in sediments and biota from the coast of Mahdia, Tunisia
2023
Souaf, Bouthaina | Methneni, Nosra | Beltifa, Asma | Lo Turco, Vincenzo | Danioux, Anthony | Litrenta, Federica | Sedrati, Mouncef | Ben Mansour, Hedi | Di Bella, Giuseppa
Plasticizers are compounds often involved in the manufacturing of plastic products. Nevertheless, the ageing of the latter generates plasticizers that generally end up in the marine environment. In fact, marine pollution by phthalate acid esters (PAEs) and their alternatives has become an environmental and health issue of serious concern, as they are largely and ubiquitously present in the environment and aquatic organisms. In the present study, four PAEs, such as diethyl phthalate (DEP), diisobutyl phthalate (DiBP), dibutyl phthalate (DBP), and di(2-ethylhexyl) phthalate (DEHP), and one non-phthalate plasticizer (NPP), namely di-2-ethylhexyl terephthalate (DEHT), are wanted in different marine compartments from the coast of Mahdia in Tunisia such as sediment, seagrass, and mussel. The most abundant and frequently detected congener was DEHT at the concentrations reached 1.181 mg/kg in the sediment, 1.121 mg/kg in the seagrass, and 1.86 mg/kg in the mussel. This result indicates that the DEHT could emerge through the food chain and therefore bioaccumulate in marine compartments. In addition, we noticed that the seasonal variations of plasticizers were seriously affected by environmental factors including industrial and urban discharges.
Показать больше [+] Меньше [-]