Уточнить поиск
Результаты 1-10 из 27
Water contamination with atrazine: is nitric oxide able to improve Pistia stratiotes phytoremediation capacity? Полный текст
2021
Vieira, Lorena A.J. | Alves, Rauander D.F.B. | Menezes-Silva, Paulo E. | Mendonça, Maria A.C. | Silva, Maria L.F. | Silva, Maria C.A.P. | Sousa, Leticia F. | Loram-Lourenço, Lucas | Alves da Silva, Adinan | Costa, Alan Carlos | Silva, Fabiano G. | Farnese, Fernanda S.
Atrazine is an herbicide commonly used in several countries. Due to its long half-life, associated with its use in large scales, atrazine residues remain as environmental pollutants in water bodies. Phytoremediation is often pointed out as an interesting approach to remove atrazine from the aquatic environment, but its practical application is limited by the high toxicity of this herbicide. Here, we characterize the damages triggered by atrazine in Pistia stratiotes, evaluating the role of nitric oxide (NO), a cell-signaling molecule, in increasing the tolerance to the pollutant and the phytoremediation potential of this species. Pistia stratiotes plants were exposed to four treatments: Control; Sodium nitroprusside (SNP) (0.05 mg L⁻¹); Atrazine (ATZ) (150 μg L⁻¹) and ATZ + SNP. The plants remained under those conditions for 24 h for biochemical and physiological analysis and 3 days for the evaluation of relative growth rate. The presence of atrazine in plant cells triggered a series of biochemical and physiological damages, such as the increase in the generation of reactive oxygen species, damages to cell membranes, photosynthesis impairment, and negative carbon balance. Despite this, the plants maintained greater growth rates than other aquatic macrophytes exposed to atrazine and showed high bioconcentration and translocation factors. The addition of SNP, a NO donor, decreased the herbicide toxicity, with an increase of over 60% in the IC₅₀ value (Inhibitor Concentration). Indeed, the NO signaling action was able to increase the tolerance of plants to atrazine, which resulted in increments in pollutant uptake and translocation, with the maintenance of overall cell (e.g. membranes) and organs (root system) structure, and the functioning of central physiological processes (e.g. photosynthesis). These factors allowed for more quickly and efficient removal of the pollutant from the environment, reducing costs, and increasing the viability of the phytoremediation process.
Показать больше [+] Меньше [-]Color Removal from Anaerobically Digested Sugar Cane Stillage by Biomass from Invasive Macrophytes Полный текст
2015
Sánchez-Galván, Gloria | Torres-Quintanilla, Ericka | Sayago, Jhair | Olguín, Eugenia J.
The ability of untreated and acid-treated biomass from Pistia stratiotes (PL and APL, respectively) and Eichhornia crassipes (ELS and AELS, respectively) to remove color from anaerobically digested sugar cane stillage (ADS) was investigated. The effects of pH (3–8), particle size (< 0.75, 0.75–1, 1–4 mm), and biomass concentration (5–15 g/L) on decolorization of ADS were assessed using untreated biomass. After acid modification of biomass (acid-treated), the effects of pH (3–8), biomass concentration (6–10 g/L), time (20–480 min), and ADS dilution (non-diluted, 1:2, 1:10, 1:20) on color removal from ADS were evaluated. Scanning electron microscopy and Fourier transform infrared spectroscopy (FTIR) analyses were also performed. A clear effect of particle size on ADS decolorization was found (21.04 ± 0.75 and 27.87 ± 0.30 % for 0.75–1 and <0.75 mm, respectively, for ELS; 31.65 ± 0.23 and 37.82 ± 0.53 for 1–4 and 0.75–1 mm, respectively, for PL). Decolorization also increased when the untreated biomass concentration was higher (15.41 ± 0.3 and 27.89 ± 0.2 % for 5 and 10 g/L, respectively, for ELS; 15.61 ± 0.11 and 33.06 ± 1.09 % for 5 and 10 g/L, respectively, for PL). The use of acid-treated biomass enhanced the effect of pH on color removal (48.30 ± 1.27 and 12.96 ± 0.27 % for pH of 3 and 7, respectively, for AELS; 47.11 ± 1.72 and 6.62 ± 0.21 % for pH of 3 and 7, respectively, for APL). The highest rate of color removal obtained using acid-treated biomass was 55.58 ± 1.82 and 56 ± 0.77 % for AELS and APL, respectively. The FTIR spectra analysis suggested the electrostatic attraction between protonated carboxylic groups on biomass and anionic colored compounds as being one of the adsorption mechanisms for ADS decolorization. The use of dry biomass from invasive macrophytes is an effective alternative for color removal from ADS.
Показать больше [+] Меньше [-]Nitrogen and Phosphorus Remediation by Three Floating Aquatic Macrophytes in Greenhouse-Based Laboratory-Scale Subsurface Constructed Wetlands Полный текст
2009
Polomski, Robert F. | Taylor, Milton D. | Bielenberg, Douglas G. | Bridges, William C. | Klaine, Stephen J. | Whitwell, Ted
In the greenhouse and container nursery production industry there is potential for runoff of nitrogen (N) and phosphorus (P), which may contaminate surface and groundwater. Since the 1950s constructed wetlands (CWs), as a simple, low-technology method, have been shown to effectively treat agricultural, industrial, and municipal wastewater. We investigated the N and P attenuating potential of three floating hydrophytes planted in a laboratory-scale subsurface flow (SSF) CW system. Over an 8-week period plants were supplied with N and P (0.39 to 36.81 mg·L⁻¹ N and 0.07 to 6.77 mg·L⁻¹ P) that spanned the rates detected in nursery runoff between the discharge and inflow locations of a commercial nursery currently employing CWs. Whole plant dry weight was positively correlated with N and P supplied. Highest N recovery rates were exhibited by water hyacinth (Eichhornia crassipes [Mart.] Solms.) and water lettuce (Pistia stratiotes L.). P recovery rates were similar for water hyacinth, water lettuce, and dwarf redstemmed parrotfeather (Myriophyllum aquaticum [Vell.] Verdc.). These floating hydrophytes can be cultivated in a SSF CW to remediate runoff losses of N and P. The possibility exists for integrating them into a polycultural remediation system that includes emergent aquatic macrophytes for processing and polishing nursery/greenhouse wastewater.
Показать больше [+] Меньше [-]Accumulation of metals in macrophytes from water reservoirs of a power supply plant, Rio de Janeiro State, Brazil Полный текст
2007
Valitutto, R.S. | Sella, S.M. | Silva-Filho, E.V. | Pereira, R.G. | Miekeley, N.
Aquatic macrophytes are well known accumulators for heavy metals, the reason why they are used as bioindicators for water quality and in phytoremediaton strategies. This study reports on the elemental concentrations in four free-floating aquatic macrophytes (S. auriculata; P. stratiotes; E. crassipes and E. azurea) growing in two water reservoirs (Santana e Vigário, Rio de Janeiro State, Brazil) of an electric power plant that receive input from the polluted Paraíba do Sul River. Filtered water samples and water suspended solids from these environments were also analysed. Inductively coupled plasma mass spectrometry was used as the principal method, allowing the determination of up to 41 elements, including the rare-earth elements (REEs) and other trace metals not assayed before in these macrophytes. The results show that all elements studied are accumulated by the macrophytes with concentration ratios (CR = [plant]: [water]) varying from about 1,000 to 200,000, based on the dry weight of the plant species. With a few exceptions, highest accumulations were observed in E. crassipes in which CRs increase in the sequence: Cu < Mo < Cr < Pb < Tl < Fe < La < Zn < Ce< Mn. Surprisingly high CRs (e.g. Ce: 74,000) and corresponding mass concentrations were observed for the rare-earth elements (e.g. [summation operator]REE: 112 mg kg-¹), also measured in the water suspended particle fraction. The results show that this fraction acts as an effective sink for trace metals in the aquatic system studied and seems to play also an important role in the transfer of metals from water to the plant species.
Показать больше [+] Меньше [-]Phytoremediation of synthetic textile dyes: biosorption and enzymatic degradation involved in efficient dye decolorization by Eichhornia crassipes (Mart.) Solms and Pistia stratiotes L Полный текст
2021
Ekanayake, Manavi Sulakkana | Udayanga, Dhanushka | Wijesekara, Isuru | Manage, Pathmalal
The effectiveness of four aquatic floating plants: Eichhornia crassipes, Pistia stratiotes, Lemna minor, Salvinia sp., and a submerged plant Hydrilla sp. on decolorization and detoxification of five structurally different textile dyes: CI Direct Blue 201 (DB 201), Cibacron Blue FR, Cibanone Gold Yellow RK, Vat Green FFB, and Moxilon Blue GRL were studied. The E. crassipes and P. stratiotes showed complete decolorization of all the dyes tested, while Salvinia sp. (79–86%), L. minor (16–24%), and Hydrilla sp. (6–13%) were recorded as the least tolerance for all the dyes even after 14 days of incubation. Therefore, E. crassipes and P. stratiotes were selected for further studies using DB 201 as the model dye. E. crassipes and P. stratiotes showed complete decolorization of DB 201 at 48 and 84 h of incubation, respectively, and decolorization was well effective in the pH range 6–9. The crude extract of intracellular enzymes obtained from the roots of E. crassipes (46%) and P. stratiotes (20%) showed significant involvement on decolorization of DB 201, compared with the activity of crude extracellular extract and isolated endophytic bacteria and fungi (p ≤ 0.05). Further, 18 and 22% of biosorption of DB 201 dye were recorded by E. crassipes and P. stratiotes, respectively, suggesting that decolorization mechanisms of DB 201 dye by E. crassipes and P. stratiotes were based on biosorption and intracellular enzyme activities. The FTIR spectra and seed germination assay confirmed biodegradation and detoxification of DB 201 dye by E. crassipes and P. stratiotes plants along with complete color removal. Thus, present study confers the potential applicability of E. crassipes and P. stratiotes plants for textile dye removal and release to the environment without further treatment.
Показать больше [+] Меньше [-]Phytoremediation of Copper-Contaminated Water with Pistia stratiotes in Surface and Distilled Water Полный текст
2020
Tang, Kuok Ho Daniel | Awa, Soo Hooi | Hadibarata, Tony
Copper contamination of industrial waste streams is increasingly common with copper used in an array of industrial processes. Phytoremediation of copper-contaminated water with Pistia stratiotes presents a cost-effective, efficient and uncomplicated alternative for copper removal from industrial wastewater. This study examines the ability of Pistia stratiotes to remove copper from distilled water representing a highly nutrient-deficient medium and natural surface water containing plant nutrients inherently. Control and experimental sets were set up with growth solutions of distilled water and natural surface water spiked with 5 g/mL, 10 g/mL, 15 g/mL, 20 g/mL and 25 g/mL copper. The control sets were devoid of Pistia stratiotes while the experimental sets contained Pistia stratiotes. Copper concentration and pH of the solutions were tracked over 10 days. This study revealed the ability of Pistia stratiotes to remove copper in both types of growth solution with contamination level ranging from 5 to 25 mg/L and pointed to its ability to phytoremediate higher level of copper contamination. Pistia stratiotes also raised the pH of the growth solutions. Copper removal from both types of growth solution demonstrated a predominantly first-order elimination kinetics except for copper concentrations above 15 mg/L in distilled water where the zero-order elimination kinetics predominated. Copper removal efficiency decreased with increasing copper concentrations in both types of growth solution with removal efficiency in natural surface water growth solutions consistently higher. It highlights the ability of Pistia stratiotes to phytoremediate highly nutrient-deficient and natural surface water media.
Показать больше [+] Меньше [-]Analysis of Granulometric Composition of Algal Suspensions in Wastewater Treated with Hydroponic Method Полный текст
2017
Bawiec, Aleksandra | Pawęska, Katarzyna | Pulikowski, Krzysztof
The aim of the study was to determine the changes in suspension particle size identified in biologically treated wastewater, which was then treated in hydroponic system with use of engineering lighting by the light-emitting diodes (LED). The study was subjected to wastewater purified under laboratory conditions, in a hydroponic system using the effect of macrophytes Pistia stratiotes and growing algae. Measurement of particle size was made using a laser granulometer. Analysis of the results showed that the additional lighting of the hydroponic system with LED can significantly influence the ability of the suspension particles to agglomerate and, consequently, determine their sedimentation properties. In hydroponic system supported by additional lighting, more particles were observed with equivalent diameter D(3.2) smaller than 10 μm than those in the tank without additional lighting, indicating a higher reactivity of the particles. Determining the size of equivalent diameters D(4.3) allowed us to observe that in hydroponic system, particles of relatively small size predominate, which negatively affects the sedimentation process of the suspensions. Determination of particle size of suspensions consisting mainly of algae and the dynamics of their changes are the basis for specification of an effective method of removing particles from the system to protect the receiver from excessive suspension concentrations.
Показать больше [+] Меньше [-]Biosorption of Toxic Metals by Water Lettuce (Pistia stratiotes) Biomass Полный текст
2017
Rodrigues, Ana Carolina Dornelas | Amaral Sobrinho, Nelson Moura Brasil do | Santos, Fabiana Soares dos | dos Santos, André Marques | Pereira, Ana Carolina Callegario | Lima, Erica Souto Abreu
Adsorption isotherms were constructed to evaluate the potential use of water lettuce (Pistia stratiotes) dry biomass for the biosorption of zinc and cadmium. One gram of dry biomass of this plant was treated with five increasing doses of zinc (1.8, 18, 50, 79, and 105 mg L⁻¹) and four doses of cadmium (0.01, 0.1, 1, and 10 mg L⁻¹), for nine collection times (1, 3, 6, 12, 24, 36, 48, 60, and 72 h). The levels of these metals were determined by atomic absorption spectrophotometry. To evaluate changes in the surface morphology of the dry biomass, scanning electron microscopy (SEM) images were taken of the samples subjected to the greatest contamination, and these were compared with the images of the samples without zinc and cadmium (control). The ISOFIT software was used to select the isotherm model that best fit the biosorption of metals by water lettuce dry biomass. The linear model was determined to be the best-fitting isotherm model, because it had the lowest corrected Akaike information criterion (AICc) value and a Akaike weight (AICw) value closest to one, which indicates the high affinity of the biosorbent for the adsorbates evaluated. The results for both metals demonstrated greater than 70% reductions in the concentrations of the metals in the contaminated solutions. The SEM images indicated changes in the morphology of the contaminated biomass, thus demonstrating the biosorption mechanisms and confirming the potential of the dry biomass of this plant for use in the remediation of solutions contaminated with zinc and cadmium.
Показать больше [+] Меньше [-]Water Lettuce Pistia stratiotes L. Response to Lead Toxicity Полный текст
2012
Vesely, Tomas | Neuberg, Marek | Trakal, Lukas | Szakova, Jiřina | Tlustoa, Pavel
The effects of one of the most toxic heavy metals, lead (Pb), applied in two different concentrations and combined with chelate application were investigated on the water macrophyte (Pistia stratiotes L.) physiology. The influences were observed by the chlorophyll and free amino acid content determination. Also the lead accumulation in macrophyte biomass was investigated to assess the potential efficiency of this plant for rhizofiltration of highly Pb-polluted water. Na EDTA and Na citrate were used as chelates and Pb(NO3)2 as lead supplement. The application of organic chelates simulated conditions of an induced phytoextraction process. Statistical analyses were performed as a one-way ANOVA with a subsequent Tukey HSD test at a level of P < 0.05. Pb contents in both root and leaf tissues gradually increased with increasing Pb concentrations in the nutrient solution. More lead was accumulated in leaves than in roots within all treatments. The total chlorophyll content decreased with increased Pb concentration and with a higher content of chelates. The chelate addition increased the total amino acid content in leaves but decreased the total amino acid content in roots. The addition of lead with chelates decreased the dry biomass weight. However, water macrophyte showed extremely high lead accumulation in biomass in the short term (up to 8 days) and this accumulation potential could be used for relatively fast and effective decrease of high concentration of this risk element in contaminated water or sewage.
Показать больше [+] Меньше [-]Removal of Silver and Lead Ions from Water Wastes Using Azolla filiculoides, an Aquatic Plant, Which Adsorbs and Reduces the Ions into the Corresponding Metallic Nanoparticles Under Microwave Radiation in 5 min Полный текст
2011
Elmachliy, Smadar | Chefetz, Benny | Tel-Or, Elisha | Vidal, Lorena | Canals, Antonio | Gedanken, Aharon
Pollution of water bodies with heavy metal ions is a major worldwide environmental problem. The objective of this study was to elucidate the mechanism in which metallic ions are adsorbed and reduced to metallic nanoparticles onto plant materials using microwave radiation. In this research, we have fabricated metallic silver and lead nanoparticles from their corresponding ions using the aquatic plants Azolla filiculoides and Pistia stratiotes (since identical results are obtained for both plants, the emphasis will be on the Azolla) under microwave radiation. Our data show that metallic silver and metallic lead nanoparticles were completely removed from the polluted solution and were embedded in the A. filiculoides surface after 5 min of microwave reaction. It was also found that, for both metals, reduction of the metallic ions was accomplished by the plant matrix without the need of an external reducing agent. Most of the particles had a spherical shape within the 10–50 nm size range. Mass balance data clearly indicate that most of the silver particles were found on the surface of the plant and not in the clean water. Pectin and α-glucuronic acid did not reduce the silver or lead ions under microwave radiation. We therefore hypothesize that perhaps the proteins or sugar alcohols in the plant matrix were serving as the reducing agents. We believe that this technique in which adsorption and reduction are combined using microwave radiation can be applied for removing and recycling metallic ions from contaminated water and industrial wastewater.
Показать больше [+] Меньше [-]