Уточнить поиск
Результаты 1-10 из 80
Effects of acid rain on growth and nutrient concentrations in Scots pine and Norway spruce seedlings grown in a nutrient-rich soil.
1995
Back J. | Huttunen S. | Turunen M. | Lamppu J.
Ozone alters carbon allocation in loblolly pine: assessment with carbon-11 labeling.
1990
Spence R.D. | Rykiel E.J. Jr. | Sharpe P.J.H.
Carbon isotope composition, macronutrient concentrations, and carboxylating enzymes in relation to the growth of Pinus halepensis mill. when subject to ozone stress
2010
Inclan , Rosa (Ecotoxicology of Air Pollution, Madrid(Espagne).) | Gimeno , Benjamin S. (Ecotoxicology of Air Pollution, Madrid(Espagne).) | Peñuelas , Josep (Universitat Autónoma de Barcelona, Barcelone(Espagne).) | Gerant , Dominique (INRA , Champenoux (France). UMR 1137 Ecologie et Ecophysiologie Forestières) | Querido , Alberto (Ecotoxicology of Air Pollution, Madrid(Espagne).)
We present here the effects of ambient ozone (O3)-induced decline in carbon availability, accelerated foliar senescence, and a decrease in aboveground biomass accumulation in the Aleppo pine (Pinus halepensis Mill.). Aleppo pine seedlings were continuously exposed in open-top chambers for 39 months to three different types of O3 treatments, which are as follows: charcoal-filtered air, nonfiltered air (NFA), and nonfiltered air supplemented with 40 ppb O3 (NFA+). Stable carbon isotope discrimination (Δ) and derived time-integrated ci/ca ratios were reduced after an accumulated ozone exposure over a threshold of 40 ppb (AOT40) value from April to September of around 20,000 ppb·h. An AOT40 of above 67,000 ppb·h induced reductions in ribulose-1, 5-biphosphate carboxylase/oxygenase activity, aboveground C and needle N and K concentrations, the C/N ratio, Ca concentrations in twigs under 3 mm, and the aerial biomass, as well as increases in needle P concentrations and phosphoenolpyruvate carboxylase (PEPC) activity and the N and K concentrations in twigs under 3 mm. Macronutrients losses, the limitations placed on carbon uptake, and increases in catabolic processes may be the causes of carbon gain diminution in leaves which was reflected as a reduction in aboveground biomass at tree level. Stimulation of PEPC activity, the consequent decreased Δ, and compensation processes in nutrient distribution may increase O3 tolerance and might be interpreted as part of Aleppo pine acclimation response to O3.
Показать больше [+] Меньше [-]A slight recovery of soils from Acid Rain over the last three decades is not reflected in the macro nutrition of beech (Fagus sylvatica) at 97 forest stands of the Vienna Woods
2016
Berger, Torsten W. | Türtscher, Selina | Berger, Petra | Lindebner, Leopold
Rigorous studies of recovery from soil acidification are rare. Hence, we resampled 97 old-growth beech stands in the Vienna Woods. This study exploits an extensive data set of soil (infiltration zone of stemflow and between trees area at different soil depths) and foliar chemistry from three decades ago. It was hypothesized that declining acidic deposition is reflected in soil and foliar chemistry. Top soil pH within the stemflow area increased significantly by 0.6 units in both H2O and KCl extracts from 1984 to 2012. Exchangeable Ca and Mg increased markedly in the stemflow area and to a lower extent in the top soil of the between trees area. Trends of declining base cations in the lower top soil were probably caused by mobilization of organic S and associated leaching with high amounts of sulfate. Contents of C, N and S decreased markedly in the stemflow area from 1984 to 2012, suggesting that mineralization rates of organic matter increased due to more favorable soil conditions. It is concluded that the top soil will continue to recover from acidic deposition. However, in the between trees areas and especially in deeper soil horizons recovery may be highly delayed. The beech trees of the Vienna Woods showed no sign of recovery from acidification although S deposition levels decreased. Release of historic S even increased foliar S contents. Base cation levels in the foliage declined but are still adequate for beech trees. Increasing N/nutrient ratios over time were considered not the result of marginally higher N foliar contents in 2012 but of diminishing nutrient uptake due to the decrease in ion concentration in soil solution. The mean foliar N/P ratio already increased to the alarming value of 31. Further nutritional imbalances will predispose trees to vitality loss.
Показать больше [+] Меньше [-]Plant senescence: A mechanism for nutrient release in temperate agricultural wetlands
2007
Kröger, R. | Holland, M.M. | Moore, M.T. | Cooper, C.M.
The beneficial uptake of nutrients by wetland plants is countered to some extent by nutrient release back into the aquatic environment due to vegetative die-back. This current study examined whether Leersia oryzoides, a common wetland plant, exhibits luxury uptake of nutrients from simulated farm runoff. The study also tested whether with subsequent decomposition, these nutrients are released back into the water column. When exposed to elevated (>2 mg/L N and P) runoff, L. oryzoides assimilated significantly higher concentrations of nitrogen (p < 0.001) and phosphorus (p < 0.001) in above-ground biomass as compared to non-enriched treatments (<0.05 mg/L N and P). Subsequently, senescence of enriched above-ground biomass yielded significantly higher concentrations of phosphorus (2.19 ± 0.84 mg P/L). Using L. oryzoides as our model, this study demonstrates nitrogen and phosphorus sequestration during the growing season and release of phosphorus in the winter. Release of sequestered nutrients during plant senescence.
Показать больше [+] Меньше [-]Root fungal colonisation in Deschampsia flexuosa: Effects of pollution and neighbouring trees
2007
Ruotsalainen, A.L. | Markkola, A. | Kozlov, M.V.
In industrial barrens adjacent to a nickel-copper smelter at Monchegorsk, the Kola Peninsula, root colonisation in Deschampsia flexuosa by arbuscular mycorrhizal (AM)-type of hyphae was lower than in unpolluted forests (60.9 vs. 80.4%), while Olpidium-colonisation showed a marginally significant decline, and dark septate endophytic (DSE) hyphal colonisation was not affected. We detected an interactive effect of pollution and a neighbouring tree on DSE hyphal colonisation: at the highly polluted sites, colonisation was lower in D. flexuosa growing near trees, whereas at sites with low pollution the presence of the neighbouring tree had no effect on colonisation. High numbers of intracellular DSE sclerotia in the industrial barrens (13.3 vs. 3.4%) may indicate a survial strategy in an unfavourable environment and a dispersal strategy into a more favourable environment. While lower root colonisation by AM fungi has been also earlier reported in graminoids for heavy metal contamination, the results on other ubiquitous fungi colonising D. flexuosa roots are more novel. Severe pollution decreased root colonisation by some fungal groups; neighbouring trees decreased root colonisation by dark septate endophytic fungi in highly polluted sites.
Показать больше [+] Меньше [-]Use of ethylenediurea (EDU) to ameliorate ozone effects on purple coneflower (Echinacea purpurea)
2007
Szantoi, Z. | Chappelka, A.H. | Muntifering, R.B. | Somers, G.L.
Purple coneflower plants (Echinacea purpurea) were placed into open-top chambers (OTCs) for 6 and 12 weeks in 2003 and 2004, respectively, and exposed to charcoal-filtered air (CF) or twice-ambient (2x) ozone (O3) in 2003, and to CF, 2x or non-filtered (NF), ambient air in 2004. Plants were treated with ethylenediurea (EDU) weekly as a foliar spray. Foliar symptoms were observed in >95% of the plants in 2x-treated OTCs in both years. Above-ground biomass was not affected by 2x treatments in 2003, but root and total-plant biomass decreased in 2004. As a result of higher concentrations of select cell wall constituents (% ADF, NDF and lignin) nutritive quality was lower for plants exposed to 2x-O3 in 2003 and 2004 (26% and 17%, respectively). Significant EDU x O3 interactions for concentrations of cell wall constituents in 2003 indicated that EDU ameliorated O3 effects on nutritive quality. Interactions observed in 2004 were inconsistent. EDU can potentially ameliorate negative effects of O3 on nutritive quality in purple coneflower.
Показать больше [+] Меньше [-]Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site
2007
Farwell, A.J. | Vesely, S. | Nero, V. | Rodriguez, H. | McCormack, K. | Shah, S. | Dixon, D.G. | Glick, B.R.
The growth of transgenic canola (Brassica napus) expressing a gene for the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase was compared to non-transformed canola exposed to flooding and elevated soil Ni concentration, in situ. In addition, the ability of the plant growth-promoting bacterium Pseudomonas putida UW4, which also expresses ACC deaminase, to facilitate the growth of non-transformed and transgenic canola under the above mentioned conditions was examined. Transgenic canola and/or canola treated with P. putida UW4 had greater shoot biomass compared to non-transformed canola under low flood-stress conditions. Under high flood-stress conditions, shoot biomass was reduced and Ni accumulation was increased in all instances relative to low flood-stress conditions. This is the first field study to document the increase in plant tolerance utilizing transgenic plants and plant growth-promoting bacteria exposed to multiple stressors. Using transgenic plants and plant growth-promoting bacteria as phytoremediation methods increased plant tolerance at a metal-contaminated field site under low flood conditions.
Показать больше [+] Меньше [-]Ozone exposure of field-grown winter wheat affects soil mesofauna in the rhizosphere
2009
Schrader, Stefan | Bender, Jürgen | Weigel, Hans-Joachim
A 2-year open-top chamber experiment with field-grown winter wheat (Triticum aestivum L. cv. Astron) was conducted to examine the effects of ozone on plant growth and selected groups of soil mesofauna in the rhizosphere. From May through June in each year, plants were exposed to two levels of O3: non-filtered (NF) ambient air or NF+ 40 ppb O3 (NF+). During O3 exposure, soil sampling was performed at two dates according to different plant growth stages. O3 exposure reduced above- and below-ground plant biomass in the first year, but had little effect in the second year. The individual density of enchytraeids, collembolans and soil mites decreased significantly in the rhizosphere of plants exposed to NF+ in both years. Differences were highest around anthesis, i.e. when plants are physiologically most active. The results suggest that elevated O3 concentrations may influence the dynamic of decomposition processes and the turnover of nutrients. Ozone reduced the individual densities of enchytraeids, collembolans and soil mites in the rhizosphere of winter wheat indirectly via the plant–soil-system.
Показать больше [+] Меньше [-]Phenanthrene uptake by Medicago sativa L. under the influence of an arbuscular mycorrhizal fungus
2009
Wu, Naiying | Huang, Honglin | Zhang, Shuzhen | Zhu, Yong-Guan | Christie, Peter | Zhang, Yong
Phenanthrene uptake by Medicago sativa L. was investigated under the influence of an arbuscular mycorrhizal fungus. Inoculation of lucerne with the arbuscular mycorrhizal fungus Glomus etunicatum L. resulted in higher phenanthrene accumulation in the roots and lower accumulation in the shoots compared to non-mycorrhizal controls. Studies on sorption and desorption of phenanthrene by roots and characterization of heterogeneity of mycorrhizal and non-mycorrhizal roots using solid-state 13C nuclear magnetic resonance spectroscopy (13C NMR) demonstrated that increased aromatic components due to mycorrhizal inoculation resulted in enhanced phenanthrene uptake by the roots but lower translocation to the shoots. Direct visualization using two-photon excitation microscopy (TPEM) revealed higher phenanthrene accumulation in epidermal cells of roots and lower transport into the root interior and stem in mycorrhizal plants than in non-mycorrhizal controls. These results provide some insight into the mechanisms by which arbuscular mycorrhizal inoculation may influence the uptake of organic contaminants by plants. Colonization by an arbuscular mycorrhizal fungus promoted root uptake and decreased shoot uptake of phenanthrene by Medicago sativa L.
Показать больше [+] Меньше [-]