Уточнить поиск
Результаты 1-10 из 40
Soil and river contamination patterns of chlordecone in a tropical volcanic catchment in the French West Indies (Guadeloupe)
2016
Crabit A. | Cattan P. | Colin F. | Voltz M.
The aim of this study was to identify primary flow paths involved in the chlordecone (CLD) river contamination and quantify the CLD fluxes to assess CLD pollution levels and duration according to a typical catchment of the banana cropping area in the French Indies (Guadeloupe): the Pérou Catchment (12 km2) characterized by heavy rainfall (5686 mm year?1). Three sub-catchments (SC1, SC2 and SC3) were studied during the hydrological year 2009–2010: a pedological survey combined with a spatialized hydrochemical approach was conducted. The average soil concentration is higher in the Pérou Catchment (3400 ?g kg?1) than in the entire banana cropping area in Guadeloupe (2100 ?g kg?1). The results showed that CLD stocks in soils vary largely among soil types and farming systems: the weakest stocks are located upstream in SC1 (5 kg ha?1), where a majority of the area is non-cultivated; medium stocks are located in Nitisols downstream in SC3 (9 kg ha?1); and the greatest stocks are observed in SC2 on Andosols (12 kg ha?1) characterized by large farms. The annual water balance and the hydro-chemical analysis revealed that the three sub-catchments exhibited different behaviors. Pérou River contamination was high during low flows, which highlighted that contamination primarily originated from groundwater contributions. The results showed that only a small part of the catchment (SC2), contributing little to the water flow, comprises a major CLD contribution, which is in agreement with the highly contaminated andosol soils observed there. Another significant result considers that at least 50 years would be required to export the totality of the actual CLD soil stocks retained in the topsoil layer. The actual time for soil remediation will however be much longer considering (i) the necessary time for the chlordecone to percolate and be stored in the shallow aquifers and (ii) its travel time to reach the river. (Résumé d'auteur)
Показать больше [+] Меньше [-]Fate of chlordecone in soil food webs in a banana agroecosystem in Martinique
2024
Coulis, Mathieu | Senecal, Julie | Devriendt-Renault, Yoann | Guérin, Thierry | Parinet, Julien | Pak, Lai-Ting
Large quantities of chlordecone-based insecticides were produced and used throughout the world. One of its most important uses was to control the damage caused by Cosmopolites sordidus in banana-growing regions. In the islands of Martinique and Guadeloupe, 18,000 ha of farmland are potentially contaminated. Despite the key role played by soil macrofauna in agroecosystems, there are currently no data on their contamination. The aim of this study was to explore the fate of chlordecone (CLD) and its transfer to different organisms of the soil food web. Seven species of invertebrates representing different taxonomic groups and trophic levels of the soil communities of Martinique were targeted and collected in six experimental banana fields, with a level of contamination within a range of values classically observed. Soil samples and macrofauna from the study sites were analysed for CLD and chlordecol (CLDOH) its main transformation product. The contamination of the soil fauna were related to δ15N (trophic level), proportion of soil ingestion (diet) and types of epidermis (mucus or exoskeleton) in order to study the different mechanisms of macrofauna contamination. Presence of CLD and CLDOH could be quantified in all the soil organisms from contaminated fields. Results showed a significant relationship between the CLD contamination of detritivorous and the ash content of their faeces, suggesting that soil ingestion was the main contamination pathway. In contrast, the exoskeleton-bearing diplopod Trigoniulus coralinus and the soft-bodied earthworm Eudrilus eugeniae, both detritivores with a comparable diet, had similar contamination levels, suggesting that the type of tegument has little influence on bioaccumulation. At the scale of the entire trophic network, a significant relationship was uncovered between δ15N values and CLD contamination of the fauna, therefore providing some in situ evidence for a bioamplification process along the soil food chain.
Показать больше [+] Меньше [-]Analysis of surface water reveals land pesticide contamination: An application for the determination of chlordecone-polluted areas in Guadeloupe, French West Indies
2020
Rochette, Romain | Bonnal, Vincent | Andrieux, Patrick | Cattan, Philippe
In Guadeloupe, the use between 1972 and 1993 of chlordecone, an organochlorine insecticide, has permanently contaminated the island's soil, thus contaminating the food chain at its very beginning. There is today a strong societal requirement for an improved mapping of the contaminated zones. Given the extent of the areas to be covered, carrying out soil tests on each plot of the territory would be a long and expensive process. In this article, we explore a method of demarcating polluted areas. The approach adopted consists in carrying out, using surface water analyses, a hydrological delimitation that makes it possible to distinguish contaminated watersheds from uncontaminated ones. The selection of sampling points was based on the spatial analysis of the actual and potential contamination data existing at the beginning of the study. The approach was validated by soil analyses, after having compared the contamination data of the watersheds with the soil contamination data of the plots within them. The study thus made it possible to highlight new contaminated areas and also those at risk of contamination and to identify the plots to be targeted as a priority during future analysis campaigns by State services.
Показать больше [+] Меньше [-]Physical limitation of pesticides (chlordecone) decontamination in volcanic soils: Fractal approach and numerical simulation
2020
Woignier, Thierry | Rangon, Luc | Clostre, Florence | Mottes, Charles | Cattan, Philippe | Primera, Philippe | Jannoyer, Magalie
In the French West Indies, the chlordecone (organochloride pesticide) pollution is now diffuse becoming new contamination source for crops and environment (water, trophic chain). Decontamination by bioremediation and chemical degradation are still under development but the physical limitations of these approaches are generally not taken into account. These physical limitations are related to the poor physical accessibility to the pesticides in soils because of the peculiar structural properties of the contaminated clays (pore volume, transport properties, permeability, and diffusion). Some volcanic soils (andosols), which represent the half of the contaminated soils in Martinique, contain nanoclay (allophane) with a unique structure and porous properties. Andosols are characterized by pore size distribution in the mesoporous range, a high specific surface area, a large pore volume, and a fractal structure. Our hypothesis is that the clay microstructure characteristics are crucial physico-chemical factors strongly limiting the remediation of the pesticide. Our results show that allophane microstructure (small pore size, hierarchical microstructure, and tortuosity) favors accumulation of chlordecone, in andosols. Moreover, the clay microporosity limits the accessibility of microorganisms and chemical species able to decontaminate because of poor transport properties (permeability and diffusion). We model the transport properties by two approaches: (1) we use a numerical model to simulate the structure of allophane aggregates. The algorithm is based on a cluster–cluster aggregation model. From the simulated data, we derived the pore volume, specific surface area, tortuosity, permeability, and diffusion. We show that transport properties strongly decrease because of the presence of allophane. (2) The fractal approach. We characterize the fractal features (size of the fractal aggregate, fractal dimension, tortuosity inside allophane aggregates) and we calculate that transport properties decrease of several order ranges inside the clay aggregates. These poor transport properties are important parameters to explain the poor accessibility to pollutants in volcanic soils and should be taken into account by future decontamination process. We conclude that for andosols, this inaccessibility could render inefficient some of the methods proposed in the literature.
Показать больше [+] Меньше [-]Spatio-temporal variability of water pollution by chlordecone at the watershed scale: what insights for the management of polluted territories?
2020
Mottes, Charles | Deffontaines, Landry | Charlier, Jean-Baptiste | Comte, Irina | Della Rossa, Pauline | Lesueur Jannoyer, Magalie | Woignier, Thierry | Adele, Georges | Tailame, Anne-Lise | Arnaud, Luc | Plet, Joanne | Rangon, Luc | Bricquet, Jean-Pierre | Cattan, Philippe
Chlordecone, applied on soils until 1993 to control banana weevil, has polluted water resources in the French West Indies for more than 40 years. At the watershed scale, chlordecone applications were not homogenous, generating a spatial heterogeneity of the pollution. The roles of climate, hydrology, soil, agronomy, and geology on watershed functioning generate a temporal heterogeneity of the pollution. This study questions the interactions between practices and the environment that induce such variability. We analyzed hydrological and water pollution datasets from a 2-year monitoring program on the Galion watershed in Martinique (French West Indies). We conjointly analyzed (i) weekly chlordecone (CLD) concentration monitored on 3 river sampling sites, (ii) aquifer piezometric dynamics and pollutions, and (iii) agricultural practices on polluted soils. Our results showed that chlordecone pollution in surface waters are characterized by annual trends and infra-annual variations. Aquifers showed CLD concentration 10 times higher than surface water, with CLD concentration peaks during recharge events. We showed strong interactions between rainfall events and practices on CLD pollution requiring a systemic management approach, in particular during post-cyclonic periods. Small sub-watershed with high CLD pollution appeared to be a substantial contributor to CLD mass transfers to the marine environment via rivers and should therefore receive priority management. We suggest increasing stable organic matter return to soil as well as external input of organic matter to reduce CLD transfers to water. We identified hydrological conditions—notably drying periods—and tillage as the most influential factors on CLD leaching. In particular, tillage acts on 3 processes that increases CLD leaching: organic matter degradation, modification of water paths in soil, and allophane clay degradation.
Показать больше [+] Меньше [-]A Bayesian network approach for the identification of relationships between drivers of chlordecone bioaccumulation in plants
2019
Liber, Yohan | Cornet, Denis | Tournebize, Régis | Feidt, Cyril | Mahieu, Maurice | Laurent, François | Bedell, Jean-Philippe
Plants were sampled from four different types of chlordecone-contaminated land in Guadeloupe (West Indies). The objective was to investigate the importance of biological and agri-environmental parameters in the ability of plants to bioaccumulate chlordecone. Among the plant traits studied, only the growth habit significantly affected chlordecone transfer, since prostrate plants concentrated more chlordecone than erect plants. In addition, intensification of land use has led to a significant increase in the amount of chlordecone absorbed by plants. The use of Bayesian networks uncovers some hypothesis and identifies paths for reflection and possible studies to identify and quantify relationships that explain our data.
Показать больше [+] Меньше [-]The pesticide chlordecone is trapped in the tortuous mesoporosity of allophane clays
2018
Woignier, Thierry | Clostre, Florence | Fernandes, Paula | Soler, Alain | Rangon, Luc | Sastre-Conde, Maria Isabel | Jannoyer-Lesueur, Magalie
Some volcanic soils like andosols contain short-range order nanoclays (allophane) which build aggregates with a tortuous and fractal microstructure. The aim of the work was to study the influence of the microstructure and mesoporosity of the allophane aggregates on the pesticide chlordecone retention in soils. Our study shows that the allophane microstructure favors pollutants accumulation and sequestration in soils. We put forth the importance of the mesoporous microstructure of the allophane aggregates for pollutant trapping in andosols. We show that the soil contamination increases with the allophane content but also with the mesopore volume, the tortuosity, and the size of the fractal aggregate. Moreover, the pore structure of the allophane aggregates at nanoscale favors the pesticide retention. The fractal and tortuous aggregates of nanoparticles play the role of nanolabyrinths. It is suggested that chlordecone storage in allophanic soils could be the result of the low transport properties (permeability and diffusion) in the allophane aggregates. The poor accessibility to the pesticide trapped in the mesopore of allophane aggregates could explain the lower pollutant release in the environment. (Résumé d'auteur)
Показать больше [+] Меньше [-]Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France)
2017
Vernier F. | Leccia-Phelpin O. | Lescot J.M. | Minette S. | Miralles A. | Barberis D. | Scordia C. | Kuentz-Simonet V. | Tonneau J.P.
Non-point source pollution is a cause of major concern within the European Union. This is reflected in increasing public and political focus on a more sustainable use of pesticides, as well as a reduction in diffuse pollution. Climate change will likely to lead to an even more intensive use of pesticides in the future, affecting agriculture in many ways. At the same time, the Water Framework Directive (WFD) and associated EU policies called for a “good” ecological and chemical status to be achieved for water bodies by the end of 2015, currently delayed to 2021–2027 due to a lack of efficiency in policies and timescale of resilience for hydrosystems, especially groundwater systems. Water managers need appropriate and user-friendly tools to design agro-environmental policies. These tools should help them to evaluate the potential impacts of mitigation measures on water resources, more clearly define protected areas, and more efficiently distribute financial incentives to farmers who agree to implement alternative practices. At present, a number of reports point out that water managers do not use appropriate information from monitoring or models to make decisions and set environmental action plans. In this paper, we propose an integrated and collaborative approach to analyzing changes in land use, farming systems, and practices and to assess their effects on agricultural pressure and pesticide transfers to waters. The integrated modeling of agricultural scenario (IMAS) framework draws on a range of data and expert knowledge available within areas where a pesticide action plan can be defined to restore the water quality, French “Grenelle law” catchment areas, French Water Development and Management Plan areas, etc. A so-called “reference scenario” represents the actual soil occupation and pesticide-spraying practices used in both conventional and organic farming. A number of alternative scenarios are then defined in cooperation with stakeholders, including socio-economi
Показать больше [+] Меньше [-][Character of pollution and longtime variations of Tamis river water quality]
1997
Cukic, Z. (Univerzitet u Novom Sadu, Novi Sad (Yugoslavia). Prirodno-matematicki fakultet, Institut za hemiju) | Kilibarda, P. | Kojcic, K. | Jovanovic, D.
In this paper, the results of statistical analysis of then years water quality data of Tamis river at the Romanian-Yugoslav border ("Jasa Tomic" Control Station) are presented. Following changes of analyzed water quality parameters at the Romanian-Yugoslav border a strong trend of deterioration has been observed during analyzed period. Because of periodical accidentally high organic content (COD, BOD) and concentration of ammonia and organic nitrogen in river water, it is concluded that upstream discharging of farm waste waters was the main reason of deterioration of water quality along the Yugoslav part of Tamis river.
Показать больше [+] Меньше [-]The impact of livestock farming on UK river quality and the development of a possible control strategy
1993
Mainstone, C.P. | Rutt, G.P. | Woodrow, D. (Water Research Centre, Marlow, Bucks (United Kingdom))