Уточнить поиск
Результаты 1-10 из 32
Meteorological patterns, technical validation, and chemical comparison of atmospheric dust depositions and bulk sand in the Arabian Gulf region
2021
Elsayed, Yehya | Kanan, Sofian | Farhat, Ahmad
This study reports seasonal variations of meteorological parameters, atmospheric dust and dust-borne heavy metals concentrations measured, over a period of two years, next to two major airports (Dubai International Airport and Abu Dhabi International Airport) in the Gulf Cooperation Council (GCC) region. On-line monitoring stations were installed at each location next to dust samplers used to frequently collect PM2.5 and PM10 on Teflon filters for metal analysis. Clear seasonal variation in meteorological parameters were identified. The particulate matter concentrations depicted from the two locations were continuously monitored. The PM2.5 concentration ranged from 50 to 100 μg/m³ on normal days but reached 350–400 μg/m³ per day during mild storms. The PM10 levels ranged between 100 and 250 μg/m³ during normal days and spiked to 750 μg/m³ during mild storms. Energy Dispersive X-Ray Analysis (EDS) revealed the presence of significant amounts of alkali and alkaline earth metals, which pose potential harm to aircraft engines. ICP analysis showed the presence of heavy and toxic metals in concentrations that may pose harm to human health. Bulk sand samples from Abu Dhabi sites showed chemical similarities to the atmospheric dust samples. The concentrations of heavy metals, PM2.5, and PM10 are at levels that require further monitoring due to their impact on human health. The two years meteorological monitoring, with the seasonal variations, provided additional regional data in the Arabian Gulf. Furthermore, the study concluded that Sand and Dust storms (SDS) occur more frequently at the northern Arabian Gulf compared to its southern region. The chemical correlation between atmospheric dust and regional desert sand suggests the localized origin of the smaller dust particles that may form by breaking apart of the ground sand grains. As a result of the ongoing urbanization in the region, it is essential to collect additional data from various locations for a longer period of time.
Показать больше [+] Меньше [-]Microplastic particles increase arsenic toxicity to rice seedlings
2020
Dong, Youming | Gao, Minling | Song, Zhengguo | Qiu, Weiwen
Hydroponic experiments were conducted to study the effects of microplastic particles of polystyrene (PS) and polytetrafluoroethylene (PTFE) on arsenic (As) content in leaves and roots of rice seedlings, and the changes in root vigor and physiological and biochemical indicators under single or combined PS and PTFE with As(III) treatment. Rice biomass decreased with increasing concentrations of PS, PTFE, and As(III) in the growth medium. The highest root (leaf) biomass decreases were 21.4% (10.2%), 25.4% (11.8%), and 26.2% (16.2%) with the addition of 0.2 g L⁻¹ PS, 0.2 g L⁻¹ PTFE, and 4 mg L⁻¹ As(III), respectively. Microplastic particles and As(III) inhibited biomass accumulation by inhibiting root activity and RuBisCO activity, respectively. The addition of As(III) and microplastic particles (PS or PTFE) inhibited photosynthesis through non-stomatal and stomatal factors, respectively; furthermore, net photosynthetic rate, chlorophyll fluorescence, and the Chl a content of rice were reduced with the addition of As(III) and microplastic particles (PS or PTFE). Microplastic particles and As(III) induced an oxidative burst in rice tissues through mechanical damage and destruction of the tertiary structure of antioxidant enzymes, respectively, thereby increasing O₂⁻ and H₂O₂ in roots and leaves, inducing lipid peroxidation, and destroying cell membranes. When PS and PTFE were added at 0.04 and 0.1 g L⁻¹, respectively, the negative effects of As(III) on rice were reduced. Treatment with 0.2 g L⁻¹ PS or PTFE, combined with As(III), had a higher impact on rice than the application of As(III) alone. PS and PTFE reduced As(III) uptake, and absorbed As decreased with the increasing concentration of microparticles. The underlying mechanisms for these effects may involve direct adsorption of As, competition between As and microplastic particles for adsorption sites on the root surface, and inhibition of root activity by microplastic particles.
Показать больше [+] Меньше [-]Adsorption mechanism of As(III) on polytetrafluoroethylene particles of different size
2019
Dong, Youming | Gao, Minling | Song, Zhengguo | Qiu, Weiwen
Microplastics exhibit active environmental behavior and unique surface characteristics, and act as carriers for the migration of trivalent arsenic (As(III)) in the environment. Herein, the mechanism by which polytetrafluoroethylene (PTFE) microplastic particles adsorb As(III) is systematically determined. The larger the size of PTFE particles, the smaller the specific surface area, the higher the point of zero charge (PZC), and the more unfavorable adsorption of As(III); the highest adsorption amount can reach 1.05 mg g⁻¹. The adsorption process can be divided into three stages by the intraparticle diffusion model: external mass transfer, intraparticle diffusion, and dynamic equilibrium, of which the external mass transfer stage is the adsorption rate-limiting stage. The Langmuir isotherm model better represented the equilibrium adsorption results. The adsorption of As(III) by PTFE was an exothermic process, and because the increase in temperature broke the hydrogen bond, the amount of adsorption was decreased, which was not conducive to spontaneous adsorption. In the pH range of 3–7, as the pH value increased, the amount of As(III) adsorbed by PTFE gradually decreased, which may be related to the change in PZC for PTFE and the protonation of As(III). The H on the surface hydroxyl group of the PTFE exhibited a very large positive potential (+82.37 kcal mol⁻¹). Thus, it can attract the arsenic oxyanion, and As(III) was subsequently adsorbed on the surface of the PTFE through the hydrogen bond on the hydroxyl group. Electrostatic force and non-covalent interaction were the key mechanisms affecting the PTFE adsorption.
Показать больше [+] Меньше [-]Toxicological effects of personal exposure to fine particles in adult residents of Hong Kong
2021
Chen, Xiao-Cui | Chuang, Hsiao-Chi | Ward, Tony J. | Sarkar, Chinmoy | Webster, Chris | Cao, Junji | Hsiao, Ta-Chih | Ho, Kin-Fai
Toxicological studies have demonstrated the associations between fine particle (PM₂.₅) components and various cytotoxic endpoints. However, few studies have investigated the toxicological effects of source-specific PM₂.₅ at the individual level. To investigate the potential impact of source-specific PM₂.₅ on cytotoxic effects, we performed repeated personal PM₂.₅ monitoring of 48 adult participants in Hong Kong during the winter and summer of 2014–2015. Quartz filters were analyzed for carbonaceous aerosols and water-soluble ions in PM₂.₅. Teflon filters were collected to determine personal PM₂.₅ mass and metal concentrations. The toxicological effects of personal PM₂.₅ exposure—including cytotoxicity, inflammatory response, and reactive oxygen species (ROS) production—were measured using A549 cells in vitro. Personal PM₂.₅ samples collected in winter were more effective than those collected in summer at inducing cytotoxicity and the expression of proinflammation cytokine IL-6. By contrast, summer personal PM₂.₅ samples induced high ROS production. We performed a series of statistical analyses, Spearman correlation and a source apportionment approach with a multiple linear regression (MLR) model, to explore the sources contributing most significantly to personal PM₂.₅ bioreactivity. Secondary inorganic species and transition metals were discovered to be weak-to-moderately associated with cytotoxicity (rₛ: 0.26–0.55; p < 0.01) and inflammatory response (rₛ: 0.26–0.44; p < 0.05), respectively. Carbonaceous aerosols (i.e., organic and elemental carbon; rₛ: 0.23–0.27; p < 0.05) and crustal material (Mg and Ca) was positively associated with ROS generation. The PMF–MLR models revealed that tailpipe exhaust and secondary sulfate contributed to ROS generation, whereas secondary nitrate was the major contributor to PM₂.₅ cytotoxicity and inflammation. These results improve and variate the arguments for practical policies designed to mitigate the risks posed by air pollution sources and to protect public health.
Показать больше [+] Меньше [-]Size-segregated chemical source profiles and potential health impacts of multiple sources of fugitive dust in and around Bhopal, central India
2021
Yadav, Kajal | Sunder Raman, Ramya
PM₂.₅ and PM₁₀ fugitive dust samples from multiple sources (construction, demolition, industrial, agricultural fields, and bare ground) were collected in triplicate for each size bin, from 18 distinct locations in and around Bhopal, central India. The dust samples were dried, sieved, and re-suspended in a chamber fitted with a suitable sampling system, to collect PM₂.₅ and PM₁₀ samples onto Teflon and Quartz filters. The filters were subjected to gravimetric and chemical analyses. Trace elements, water-soluble ions, and thermal-optical carbon fractions were quantified using a variety of analyses. These species were then used to develop PM₁₀ and PM₂.₅ chemical source profiles of the fugitive dust sources. As expected, crustal species were abundant in all source categories. For industrial dust, Fe contribution to mass in both size fractions was about 11.4% and above the upper continental crustal abundance. Further, the source profiles generated for each source were different from their counterparts in the US EPA SPECIATE database and profiles reported in literature. Thus, it will be useful to utilize profiles generated in this study to enhance receptor model performance for the study region. However, collinearity analysis of the profiles revealed that PM₁₀ agricultural and bare ground dust; and PM₂.₅ construction and demolition dust profile pairs may not be separated by receptor models. Finally, a human health risk assessment revealed that construction and industrial dust may pose significant risk to the population. The Incremental Lifetime Cancer Risk (ILCR) metric revealed that adults (2 × 10⁻⁵) and children (1 × 10⁻⁵) were susceptible to cancer risk from exposure to metals in PM₂.₅ fugitive dust. Further, children were more vulnerable than adults. This finding merits further investigation of oxidation state and solubility/bioavailability of Cr and Ni in fugitive dusts.
Показать больше [+] Меньше [-]Quantitative evaluation of polyethersulfone and polytetrafluoroethylene membrane sorption in a polar organic chemical integrative sampler (POCIS)
2020
Jeong, Yoonah | Kwon, Hyun-ah | Jeon, Hyun Pyo | Schäffer, Andreas | Smith, Kilian
The lag effect in the polar organic chemical integrative sampler (POCIS) equipped with a polyethersulfone (PES) membrane (POCIS-PES) is a potential limitation for its application in water environments. In this study, a POCIS with a poly(tetrafluoroethylene) (PTFE) membrane (POCIS-PTFE) was investigated for circumventing membrane sorption in order to provide more reliable concentration measurements of organic contaminants. Sampler characteristics such as sampling rates (RS) and sampler-water partition coefficients (KSW) were similar for POCIS-PES and POCIS-PTFE, indicating that partitioning into Oasis HLB as the receiving phase dominates the overall partitioning from the aqueous phase to the POCIS. Membrane sorption was quantified in both laboratory and field experiments. Although POCIS-PTFE showed minor membrane sorption, the PTFE membranes were not robust enough to prevent changes in the sorption of the pollutants to the inner Oasis HLB sorbent due to biofouling. This was reflected in significant ionization effects in the electrospray ionization (ESI) source during the LC-MS/MS analysis. Despite clear differences in the ionization effects, the two POCISs types provided similar time-weighted average (CTWA) concentrations after a two-week passive sampling campaign in surface water and the outflow of a wastewater treatment plant. This study contributes to a more detailed understanding of POCIS application by providing a quantitative evaluation of membrane sorption and its associated effects in the laboratory and field.
Показать больше [+] Меньше [-]A method using porous media to deliver gas-phase phthalates rapidly and at a constant concentration: Effects of temperature and media
2020
Chen, Zhuo | Afshari, Alireza | Mo, Jinhan
Phthalates are widely used as additives to consumer products. Many diseases have been shown to be related to the uptake of phthalates. To achieve equilibrium constant phthalate generation for mass transfer and exposure experiments, the present study developed a porous media based method using Teflon generators connected to the media with stainless steel connectors. Carbon sponges with the porosities of 20 ppi (pores per inch), 30 ppi, 40 ppi and honeycomb ceramics of 14 ppi were used as porous media fillers to evaluate the effect of temperature-controlled states, materials, and pore sizes on the generating performance of phthalates. The results showed that 30 ppi carbon sponge fillers at 25.0 ± 0.4 °C performed satisfactorily. DMP, DiBP and DEHP were used as examined phthalates and were generated at 12,800 ± 740 μg/m³, 330 ± 13 μg/m³ and 2.37 ± 0.15 μg/m³, respectively. The times to reach stable concentrations were 4.5 h, 18.5 h and 89.5 h, respectively. The reproducibility of DiBP and DEHP delivery deviated by less than 2.4%. Long-term generating experiments should be performed in the future. The porous media based method could stably deliver gaseous PAEs and tends to be widely used in the research of the adsorption of PAEs on surfaces (airborne particles, settled dust and indoor surfaces) and exposure experiments.
Показать больше [+] Меньше [-]A flow-through aqueous standard generation system for thin film microextraction investigations of UV filters and biocides partitioning to different environmental compartments
2017
Ahmadi, Fardin | Sparham, Chris | Pawliszyn, Janusz
In this paper problems associated with preparation of aqueous standard of highly hydrophobic compounds such as partial precipitation, being lost on the surfaces, low solubility in water and limited sample volume for accurate determination of their distribution coefficients are addressed. The following work presents two approaches that utilize blade thin film microextraction (TFME) to investigate partitioning of UV filters and biocides to humic acid (dissolved organic carbon) and sediment. A steady-state concentration of target analytes in water was generated using a flow-through aqueous standard generation (ASG) system. Dialysis membranes, a polytetrafluoroethylene permeation tube, and a frit porous (0.5 μm) coated by epoxy glue were basic elements used for preparation of the ASG system. In the currently presented study, negligible depletion TFME using hydrophilic-lipophilic balance (HLB) and octadecyl silica-based (C18) sorbents was employed towards the attainment of free concentration values of target analytes in the studied matrices. Thin film geometry provided a large volume of extraction phase, which improved the sensitivity of the method towards highly matrix-bound analytes. Extractions were performed in the equilibrium regime so as to prevent matrix effects and with aims to reach maximum method sensitivity for all analytes under study. Partitioning of analytes on dissolved organic carbon (DOC) was investigated in ASG to facilitate large sample volume conditions. Binding percentages and DOC distribution coefficients (Log KDOC) ranged from 20 to 98% and 3.71–6.72, respectively. Furthermore, sediment-water partition coefficients (Kd), organic-carbon normalized partition coefficients (Log KOC), and DOC distribution coefficients (Log KDOC) were investigated in slurry sediment, and ranged from 33 to 2860, 3.31–5.24 and 4.52–5.75 Lkg-1, respectively. The obtained results demonstrated that investigations utilizing ASG and TFME can yield reliable binding information for compounds with high log KOW values. This information is useful for study of fate, transport, and ecotoxicological effects of UV filters and biocides in aquatic environment.
Показать больше [+] Меньше [-]A novel modified Fe–Mn binary oxide graphite felt (FMBO-GF) cathode in a neutral electro-Fenton system for ciprofloxacin degradation
2021
Huang, Anqi | Zhi, Dan | Zhou, Yaoyu
A graphite felt (GF) cathode was firstly modified by Fe–Mn binary oxide (FMBO), active carbon (AC), carbon black (CB), and polytetrafluoroethylene (PTFE), which exhibits satisfactory ciprofloxacin (CIP) removal efficiency at neutral pH value in electro-Fenton (EF) system. Morphological data showed that modified cathodes have larger surface area and volume pore as well as more active sites. And electrochemical properties have proved stronger current response after modification. In compassion to the unmodified GF, the FMBO/AC/CB modified GF (FMBO-GF) has wider pH range and higher CIP removal efficiency due to its unique nanoparticles structure. The CIP removal efficiency achieved 95.40% in 30 min, and the removal efficiency of total organic carbon (TOC) achieved 93.77% in 2 h when conditions were optimal (25 mg/L initial CIP concentration, 2 mA/cm² current density, FMBO/AC: CB: PTFE of 1:1:5, and 7 initial pH value) in this study. The results of great degradation and mineralization of CIP in this study indicate that the FMBO-GF cathode has huge potential on antibiotics removals in neutral environment.
Показать больше [+] Меньше [-]First detection of microplastics in the freshwater of an Antarctic Specially Protected Area
2020
González-Pleiter, Miguel | Edo, Carlos | Velázquez, David | Casero-Chamorro, María Cristina | Leganés, Francisco | Quesada, Antonio | Fernández-Piñas, Francisca | Rossal S., J. Roberto (Julio Roberto Rossal Salazar)
Microplastics have been found in all environmental compartments investigated so far, even reaching remote areas. However, their presence in Antarctic freshwaters has not been yet reported. Here, we investigated the occurrence of microplastics in a stream from an Antarctic Specially Protected Area (Byers Peninsula, Livingston Island - ASPA No. 126), which is subject to stringent environmental protection measures as a result of which it is considered a pristine international reference site for inland waters research. Our results showed the presence of three types of microplastics in a freshwater seasonal stream, namely four polyester fibers, one black and three transparent; two acrylic fibers, one transparent and one red; and two transparent polytetrafluoroethylene films. The length and width of these fibers and films were in the 400–3546 μm (average 1118 μm), and 10–1026 μm (average 199 μm) ranges respectively. The concentration of MP was 0.95 items/1000 m³ with estimated variability in the 0.47–1.43 items/1000 m³ range. This is the first report of the presence of microplastics in Antarctic freshwater with the uniqueness that it is an Antarctic Specially Protected Area, meaning that plastic pollution reached even the most remote and pristine environments in the planet.
Показать больше [+] Меньше [-]