Уточнить поиск
Результаты 1-2 из 2
Reduction of Fusarium rot and maintenance of fruit quality in melon using eco-friendly hot water treatment
2014
Sui, Yuan | Droby, Samir | Zhang, Danfeng | Wang, Wenjie | Liu, Yongsheng
Significant losses in harvested fruit can be directly attributable to decay fungi and quality deterioration. Hot water treatment (HWT) has been demonstrated to be an effective and economic environment-friendly approach for managing postharvest decay and maintaining fruit quality. In this study, the effects of HWT (45 °C for 10, 15, 20, and 25 min) on in vitro growth of Fusarium oxysporum, in vivo Fusarium rot, and natural decay of melon were investigated. HWT inhibited spore germination and germ tube elongation of F. oxysporum. Protein impairment and ATP consumption triggered by HWT contributed to the inhibitory effect. Results of in vivo studies showed that HWT effectively controlled Fusarium rot and natural decay of melon. Correspondingly, HWT induced a significant increase in content of total phenolic compounds and lignin of melon. These findings indicate that the effects of HWT on Fusarium rot may be associated with the direct fungal inhibition and the elicitation of defense responses in fruit. Importantly, HWT used in this study had beneficial effects on fruit quality as well. HWT may represent an effective non-chemical approach for management of postharvest Fusarium rot.
Показать больше [+] Меньше [-]Ecofriendly hot water treatment reduces postharvest decay and elicits defense response in kiwifruit
2015
Chen, Huizhen | Cheng, Zhe | Wisniewski, Michael | Liu, Yongsheng | Liu, Jia
Hot water treatment (HWT) of fruit is an effective approach for managing postharvest decay of fruits and vegetables. In the present study, the effects of HWT (45 °C for 10 min) on the growth of Botrytis cinerea and Penicillium expansum in vitro, and gray (B. cinerea) and blue mold (P. expansum) development in kiwifruit were investigated. HWT effectively inhibited spore germination and germ tube elongation of B. cinerea and P. expansum. Reactive oxygen species accumulation and protein impairment in the fungi triggered by HWT contributed to the inhibitory effect. Results of in vivo studies showed that HWT controlled gray and blue mold in kiwifruit stored at 4 and 25 °C. HWT induced a significant increase in the activity of antioxidant enzymes, including catalase and peroxidase, and the level of total phenolic compounds in kiwifruit. These findings indicate that the inhibition of postharvest decay in kiwifruit by HWT is associated with the inhibition of spore germination of both fungal pathogens and the elicitation of defense response in the kiwifruit host. Moreover, HWT used in this study did not impair fruit quality. HWT appears to represent a potential non-chemical alternative for the effective management of postharvest decay of kiwifruit.
Показать больше [+] Меньше [-]