Уточнить поиск
Результаты 1-10 из 38
Photocatalytic decomposition of selected biologically active compounds in environmental waters using TiO2/polyaniline nanocomposites: Kinetics, toxicity and intermediates assessment
2018
Šojić Merkulov, Daniela V. | Despotović, Vesna N. | Banić, Nemanja D. | Armaković, Sanja J. | Finčur, Nina L. | Lazarević, Marina J. | Četojević-Simin, Dragana D. | Orčić, Dejan Z. | Radoičić, Marija B. | Šaponjić, Zoran V. | Čomor, Mirjana I. | Abramović, Biljana F.
A comprehensive study of the removal of selected biologically active compounds (pharmaceuticals and pesticides) from different water types was conducted using bare TiO₂ nanoparticles and TiO₂/polyaniline (TP-50, TP-100, and TP-150) nanocomposite powders. In order to investigate how molecular structure of the substrate influences the rate of its removal, we compared degradation efficiency of the initial substrates and degree of mineralization for the active components of pharmaceuticals (propranolol, and amitriptyline) and pesticides (sulcotrione, and clomazone) in double distilled (DDW) and environmental waters. The results indicate that the efficiency of photocatalytic degradation of propranolol and amitriptyline was higher in environmental waters: rivers (Danube, Tisa, and Begej) and lakes (Moharač, and Sot) in comparison with DDW. On the contrary, degradation efficacy of sulcotrione and clomazone was lower in environmental waters. Further, of the all catalysts applied, bare TiO₂ and TP-100 were found to be most effective in the mineralization of propranolol and amitriptyline, respectively, while TP-150 appeared to be the most efficient in terms of sulcotrione and clomazone mineralization. Also, there was no significant toxicity observed after the irradiation of pharmaceuticals or pesticides solutions using appropriate catalysts on rat hepatoma (H-4-II-E), mouse neuroblastoma (Neuro-2a), human colon adenocarcinoma (HT-29), and human fetal lung (MRC-5) cell lines. Subsequently, detection and identification of the formed intermediates in the case of sulcotrione photocatalytic degradation using bare TiO₂ and TP-150 showed slightly different pathways of degradation. Furthermore, tentative pathways of sulcotrione photocatalytic degradation were proposed and discussed.
Показать больше [+] Меньше [-]Graphite particle electrodes that enhance the detoxification of municipal solid waste incineration fly ashes in a three-dimensional electrokinetic platform and its mechanisms
2018
Huang, Tao | Zhang, Shuwen | Liu, Longfei | Xu, Jiaojiao
This paper investigated the application of graphite particle electrodes to the removal of Zn, Pb, Cu, and Cd from municipal solid waste incineration (MSWI) fly ashes in a three-dimensional (3D) electrokinetic reactor. The influences of the voltage gradient, mass ratio of graphite powers to fly ashes, nitric acid concentrations, proposing times, and liquid-solid (L-M) ratios on the remedial efficiencies of MSWI fly ashes were comprehensively studied in an orthogonal deign and a sequential double-factor setup. Significant analysis showed that changes in the mass ratios and nitric acid concentrations both had a statistically significant effect on the removals of Zn and Pb. Proposing times and L-M ratios both remarkably affected the removals of heavy metals (HMs) in a 3D electrochemical system. The graphite powers had a narrower distribution interval and slightly larger surface areas compared with MSWI fly ashes, which relented pH gradients over the time in the electrochemical experiments and minimized the bubble barricade caused by the hydrolysis. The particle electrode had increased the residue factions of Zn, Pb, Cu, and Cd in S1 region by approximately 216%, 136%, 309%, and 950%, respectively, compared with the raw MSWI fly ashes. The addition of graphite powders to a two-dimensional (2D) electrochemical process strengthened hydrolysis reactions, shortened time for the redistribution of pH balance, decreased the tortuosity of migration path, and increased the desorption concentrations of HMs in the sample area.
Показать больше [+] Меньше [-]Effects of microplastics on growth, phenanthrene stress, and lipid accumulation in a diatom, Phaeodactylum tricornutum
2020
Guo, Yahong | Ma, Wei | Li, Jiji | Liu, Wei | Qi, Pengzhi | Ye, Yingying | Guo, Baoying | Zhang, Jianshe | Qu, Chengkai
Most laboratory studies have focused on the effects of nanoplastics instead of plastics at the micrometer scale, which are the major microplastics (MPs) discarded in marine environments. Knowledge on the potential effects of micrometer scale plastics on marine microalgae remains limited. It remains unknown whether the micrometer scale plastics also affect microalgal growth, lipid accumulation and resistance to organic contaminants? In addition, the role of polymer-size on the potential hazardous effects of MPs on microalgae is unknown. In the present study, cell populations of a marine diatom, Phaeodactylum tricornutum, were treated with micrometer scale polyethylene (PEMP, 150 μm) and unplasticized polyvinyl chloride (uPVCMP, 250 μm) powders in the laboratory. Growth was assessed using a hemacytometer and neutral lipid concentrations were evaluated using the Nile Red staining method under short-term (four days) and long-term (nine days) exposure. The effects of combined PEMP and phenanthrene (Phe), and uPVCMP and Phe exposures over four days on growth were investigated. Importance scores and SHapley Additive exPlanations (SHAP) values were calculated to assess the contributions of seven factors in exposure systems to the hazardous effects of MPs on microalgae using a machine-learning prediction based on 165 data sets. Both MP types did not influence algal growth and lipid accumulation but minimized algal inhibition by the action of Phe at four days. In addition, lipid accumulation was induced at nine days. Both importance scores and SHAP values indicated that MP polymer-size was the key factor influencing MP toxicity in microalgae. In conclusion, MPs had adverse effects only in chronic tests and the potential adsorption of MPs could have led to the lower levels of toxicity in a combined MP–Phe exposure system. Compared to nanoplastics, MPs in the hundred-micrometer range do not significantly affect growth and their adsorption would not be influenced by size. Therefore, MP size is the most critical factor that should be considered in future laboratory tests and eco-toxicological risk assessments for microalgae.
Показать больше [+] Меньше [-]Effect of calcination on structure and photocatalytic property of N-TiO2/g-C3N4@diatomite hybrid photocatalyst for improving reduction of Cr(Ⅵ)
2019
Sun, Qing | Hu, Xiaolong | Zheng, Shuilin | Zhang, Jian | Sheng, Jiawei
The N-TiO2/g-C3N4@diatomite (NTCD) composite has been prepared through a simple impregnation method, using titanium tetrachloride as precursor and urea as nitrogen-carbon source. Then the effects of calcination temperature on structure, surface property and photocatalytic activity of the catalysts were investigated. And XRD, TEM, XPS, FTIR and UV–vis diffuse adsorption spectroscopy were used to characterize the obtained powders. The photocatalytic activity of the NTCD was evaluated through the reduction of aqueous Cr (VI) under visible light irradiation (λ > 400 nm). The results demonstrated that the nano-TiO2 particles ranging from 15 to 30 nm in the crystal of anatase are well deposited on the surface of diatomite in the NTCD-500 which calcined at 500 °C for 2 h. Furthermore, the g-C3N4 with the lay thickness of 0.92 nm was attached to the surface of nano-TiO2. The N-doped TiO2 and g-C3N4 doped catalysts could co-enhance response in the visible light region and reduce band gap of NTCD-500 (Eg = 3.07 eV). And the NTCD-500 sample exhibited nearly 100% removal rate within 5 h for photocatalytic reduction of Cr (VI) which was higher activity than P25, crude TiO2@diatomite and g-C3N4@diatomite.
Показать больше [+] Меньше [-]Carbon dioxide elimination and regeneration of resources in a microwave plasma torch
2016
Uhm, Han S. | Kwak, Hyoung S. | Hong, Yong C.
Carbon dioxide gas as a working gas produces a stable plasma-torch by making use of 2.45 GHz microwaves. The temperature of the torch flame is measured by making use of optical spectroscopy and a thermocouple device. Two distinctive regions are exhibited, a bright, whitish region of a high-temperature zone and a bluish, dimmer region of a relatively low-temperature zone. The bright, whitish region is a typical torch based on plasma species where an analytical investigation indicates dissociation of a substantial fraction of carbon dioxide molecules, forming carbon monoxides and oxygen atoms. The emission profiles of the oxygen atoms and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch. Various hydrocarbon materials may be introduced into the carbon dioxide torch, regenerating new resources and reducing carbon dioxide concentration in the torch. As an example, coal powders in the carbon dioxide torch are converted into carbon monoxide according to the reaction of CO2 + C → 2CO, reducing a substantial amount of carbon dioxide concentration in the torch. In this regards, the microwave plasma torch may be one of the best ways of converting the carbon dioxides into useful new materials.
Показать больше [+] Меньше [-]Improved Photocatalytic Performance for Rhodamine B Degradation by Porous Zn2SnO4 Prepared with Carbon Black as a Pore-Forming Agent
2019
Silvestri, Siara | dos Santos Trentin, Roberta | da Silveira Salla, Julia | Foletto, Edson Luiz
Hydrothermal synthesis followed by a calcination step was used to prepare porous Zn₂SnO₄ powders using carbon black as a pore-forming agent. The porous Zn₂SnO₄ was used as a photocatalyst to degrade the Rhodamine B dye from aqueous solution under UV artificial light. X-ray diffraction, N₂ adsorption-desorption isotherms, and UV-Vis diffuse reflectance were used to characterize the material. The addition of pore-forming agent (carbon black) did not change the crystalline structure of Zn₂SnO₄ phase. In addition, increasing the surface area and porosity as well as decreasing the band-gap energy was observed. The combination of these characteristics favored the photodegradation of Rhodamine B, reaching 96% of dye degradation at 15 min of reaction time. In addition, the photocatalyst was active after six cycles of reuse. Therefore, the produced material in this work showed to be a potential photocatalyst to remove Rhodamine B dye from aqueous solution.
Показать больше [+] Меньше [-]Use of Bamboo Powder Waste for Removal of Bisphenol A in Aqueous Solution
2015
Hartono, Maria R. | Assaf, Ali | Thouand, Gérald | Kushmaro, Ariel | Chen, Xiaodong | Marks, Robert S.
The scarcity of clean water affecting many parts of the world encourages efforts to improve water reclamation processes, which rely on their capability to remove diverse types of water pollutants and contaminants. Thus, this study reports the application of bamboo fiber powders as potential low-cost sorbent for removal of noxious organic compounds in aqueous solution. Bisphenol A, a biorefractory endocrine disruptor compound, was chosen as model compound in order to easily follow the separation process. Principal component analysis of the FTIR spectra and BET surface area measurements were performed on treated bamboo fiber powders. Treatment of the raw powders with alkali, ionic and non-ionic surfactants appeared to improve the bisphenol A removal performance of the bamboo fiber powders with the best removal efficiency reached at 39 % for a sorbent dosage of 4 g L⁻¹ gained after a bamboo treatment using the cationic surfactant. Effects of contact time, sorbent dosage, and particle sizes (55, 300, and 1000 μm) of cationic surfactant-treated bamboo fiber powders towards removal of bisphenol A were further assessed in a batch system with an optimum removal observed for 55 μm in particle size.
Показать больше [+] Меньше [-]Recovery of Mercury from Spent Fluorescent Lamps via Oxidative Leaching and Cementation
2015
Coskun, Sezen | Civelekoglu, Gokhan
In this work, the recovery of mercury from spent fluorescent lamps by oxidative leaching followed by cementation process was studied. Two different reactive solutions (NaOCl/NaCl and KI/I₂) during oxidative leaching were investigated whereas at the cementation process, metallic powders of iron (Fe), copper (Cu), and zinc (Zn) were used as reducing agents to capture mercury in solid phase. Mercury could be transferred to the solution with an efficiency of 96 % from the spent lamp samples through the NaOCl/NaCl reagent. The optimal leaching conditions were determined as 2-h contact time, 120 rpm agitation speed, pH 7.5, and 50 °C of temperature. The reducing agent, Zn, provided 99 % of the cementation. The optimal process conditions were observed to be as 5-min contact time, pH 1, and 5 g L⁻¹ of reducing agent concentration. This combined approach appears to be technically effective for the recovery of mercury from spent fluorescent lamps.
Показать больше [+] Меньше [-]Chelating–Ultrafiltration Treatment of Some Heavy Metal Ions in Aqueous Solutions by Crosslinking Carboxymethyl Modified Cornstarch
2012
Wang, Ting | Song, Ye | Li, Bin | Zhou, Xiaoguang
Crosslinking carboxymethyl starch (CCMS) powder of degree of substitution (DS) 0.43–0.59 was prepared by the process of two steps of alkali addition synthesis. The technique of powder coupling with ultrafiltration was used to absorb Cu2+, Zn2+, Ni2+, Pb2+, and Cd2+ from aqueous solutions. FTIR was used to demonstrate the successfully grafting of carboxymethyl groups, and the technique of microwave plasma torch atomic emission spectrometer was applied in rapid determination of the aforementioned heavy metals ions. The results revealed that the removal sequence of heavy metal ions followed the order of Pb2+>Cu2+>Cd2+>Zn2+>Ni2+. By assistant of diethylene triamine penlaacetic acid, the quaternary system of Pb2+/Ni 2+/Cd2+/Cu2+ mixture solution could have the ideal separation. Besides, the influence of pH, ζ potential, DS value, and membranes molecular weight cut-off on removal of 20 mg L−1 Pb2+ or Ni2+ was also investigated.
Показать больше [+] Меньше [-]Papaya (Carica papaya L.) Leaf Powder: Novel Adsorbent for Removal of Methylene Blue from Aqueous Solution
2012
Mukhlish, M Zobayer Bin | Khan, Maksudur Rahman | Bhoumick, Mithun Chandra | Paul, Sumona
Batch sorption experiments were carried out to investigate the potentiality of papaya leaf powder (PLP) for the removal of methylene blue (MB) from aqueous solution. The effects of various experimental parameters, such as adsorbent dose, initial solution concentration, contact time, and solution pH were also studied. The amount of dye adsorbed was found to increase with increase in initial dye concentrations. Papaya leaf adsorbs MB better in basic medium. The adsorption equilibrium data fitted well in the Langmuir isotherm equation with a monolayer sorption capacity of 512.55 mg g⁻¹. The kinetics of MB adsorption onto papaya leaf was examined using the pseudo-first and pseudo-second order and unified approach kinetic models. The adsorption kinetics followed the pseudo-second order kinetic model, but the rate constant was found to depend on initial dye concentration. The unified approach model described the equilibrium and kinetics well. The forward and backward rate constants were determined from the unified approach model.
Показать больше [+] Меньше [-]