Уточнить поиск
Результаты 1-10 из 891
Seasonal variability in water chemistry and sediment characteristics of intertidal zone at Karnafully estuary, Bangladesh
2016
Mallick, Debbrota | Islam, Md. | Talukder, Avijit | Mondal, Shamindra | Al-Imran, Md. | Biswas, Satchidananda
The Karnafully is one of the most important rivers due to its profound influence on water chemistry and sediment characteristics. The present study intended to assess the quality of water and sediment from intertidal zone of this river in respect to the pollution index. Seasonal water and sediment samples were collected during four seasons (Monsoon, post-monsoon, winter, and pre-monsoon) of 2014. The result indicates that these investigated parameters ranged as water temperature (21.7-36 °C), pH (8.0-8.7), salinity (2.4-8.8‰), total suspended solid (0.08-0.8 g/L), dissolve oxygen (0.00-4.52 mg/L), soil temperature (21.3-33 °C), pH (5.0-6.8), sand (4.13-44.10%), silt (39.93-75.89%), clay (11.98-21.19%), soil organic matter (4.33-6.21%), organic carbon (2.5-3.6%), nitrite-nitrogen (0.69-3.97 µg/L), and phosphate-phosphorus (0.23-3.44 µg/L). Multivariate statistical analyses like post-hoc LSD test, Cluster Analysis (CA), and Principal Component analysis (PCA) brought out the spatial and temporal changing pattern of water chemistry and sediment characteristics with the effect of uprising pollution. CA ascertained the compatibility among different parameters and categorized the monitoring sites into highly and moderately polluted areas. Moreover, PCA brought out five primary components and highlighted the three dormant factors, enormously regulating the river water chemistry such as municipal waste, carbon based nitrogenous compound, and local geomorphological weathering process. This investigation provided an outline on deterioration of water and sediment quality by high anthropogenic impact and suggests national policy maker to take some initiatives for retaining the quality water and sediment properties.
Показать больше [+] Меньше [-]Assessment of the limnological characteristics of Lake Bosomtwe in the Ashanti Region of Ghana
2022
Owusu-Boateng, Godfred | Ampofo-Yeboah, Akwasi | Agyemang, Thomas Kwaku | Sarpong, Kofi
The quality of the water from Lake Bosomtwe was assessed to aid in the conservation decision on the lake. Twenty-six parameters of physico-chemical, bacteriological, and organic effects and major and trace ions were evaluated using the principal component analysis. The levels of these parameters were also compared with surface water benchmarks of Ghana EPA, WHO, EU, US EPA and CCEM. As prescribed by the benchmarks of these regulatory bodies, the mean levels of temperature, pH, dissolved oxygen, total suspended solids, total dissolved solids, nitrates, phosphate, biochemical oxygen demand, chemical oxygen demand, total hardness, conductivity, alkalinity, turbidity and fluorine did not signal any lake pollution, but sulphate, total and faecal coliforms, chlorophyll-a, cadmium and mercury showed pollution tendencies. Temperature, pH, dissolved oxygen, total suspended solids, total dissolved solids, nitrates, phosphate, sulphate and total coliform bacteria were found to be the main parameters that drive 71.2% of the limnological characteristics of the lake water and deserve careful consideration in designing conservation strategies for the lake.
Показать больше [+] Меньше [-]Assessing environmental contamination of River Ganga using correlation and multivariate analysis
2015
Bhutiani, Rakesh | Khanna, D.R. | Tyagi, Bharti | Tyagi, Prashant | Kulkarni, Dipali
The aim of this study was to assess the environmental impact of socio-cultural practices on the water quality of River Ganga at the foothills of the Garhwal Himalayas in Uttarakhand State, India. The physico-chemical parameters that contributed to the temporal variation and pollution in the river were identified in this study. Principal component analysis (PCA) and Cluster analysis (CA) were used in the identification of anthropogenic factors (industrial, urban sewage, agricultural, land use and mining activities) and natural factors (soil erosion, weathering). The results of this study show that total coliform, fecal coliform, nitrate, sodium, phosphate, sulphate, TDS (Total dissolved solids), temperature, BOD (Biochemical oxygen demand), calcium and chloride are parameters significantly contributing to pollution load.
Показать больше [+] Меньше [-]Characteristics, correlations and health risks of PCDD/Fs and heavy metals in surface soil near municipal solid waste incineration plants in Southwest China
2022
Bo, Xin | Guo, Jing | Wan, Ruxing | Jia, Yuling | Yang, Zhaoxu | Lu, Yong | Wei, Min
As primary anthropogenic emission source of toxic pollutants such as heavy metals and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), municipal solid waste (MSW) incineration has caused worldwide concern. However, a comprehensive analysis of the pollution characteristics and health risks of PCDD/Fs and heavy metals in soils around MSW incineration plants is lacking. In this study, 17 PCDD/Fs and 11 heavy metals in soil samples collected near MSW incineration plants in Sichuan province were investigated to evaluate their pollution characteristics and potential health risk. Sichuan was selected as the study area because the MSW incineration amount in this province ranks first among all inland provinces in China. The PCDD/Fs concentrations ranged from 0.30 to 7.50 ng I-TEQ/kg, which were significantly below risk screening and intervention thresholds. Regarding heavy metals, principal component analysis suggested that Hg, Pb and Zn were the primary metals emitted from the MSW incineration plants. Cluster analysis of PCDD/Fs and heavy metals showed that of PCDD/Fs homologs and heavy metals (e.g., Hg, Pb, Zn and Cd) were clustered into one group, indicating the coexistence and coaccumulation of heavy metals (especially Hg, Pb, Zn, and Cd) and PCDD/Fs in soil. These heavy metals are thus candidate tracers for PCDD/Fs in soil near MSW incineration plants. A health risk analysis found that the carcinogenic and non-carcinogenic risks of PCDD/Fs and heavy metals (except for Ni) in the soil samples were all within acceptable levels. This study provides new insights into correlations and health risks of PCDD/Fs and heavy metals in surface soil near MSW incineration plants. The findings have implications for future studies of environmental and human health risk analysis related to waste incineration.
Показать больше [+] Меньше [-]Assessment of currently used organochlorine pesticides in surface water and sediments in Xiangjiang river, a drinking water source in China: Occurrence and distribution characteristics under flood events
2022
Zhang, Shengwei | Zhao, Wenyu | Yang, Chao | Li, Yanxia | Liu, Mengyue | Meng, Xiang−Zhou | Cai, Minghong
Xiangjiang (XJ) is a typical urban inland river that serves as a drinking water source, which may be affected by the currently used organochlorine pesticides (CUOCPs) originating from agricultural activities in the vicinity. On this basis, this study comprehensively explored the occurrence and distribution characteristics of CUOCPs in surface water and sediments under long-term precipitation and subsequent floods. Considering the low concentration of CUOCPs in water, a technique combining high-throughput organic analysis with high-volume solid phase extraction (High-throat/Hi-volume SPE) was introduced for effective analysis of CUCOPs. The results showed that the concentration of CUOCPs in the water and sediments of XJ ranged from 2.33 to 6.40 ng L⁻¹ (average of 3.93 ± 1.15 ng L⁻¹) and from 1.52 to 21.2 ng g⁻¹ (average of 6.60 ± 4.31 ng g⁻¹ dw), respectively. The distribution of CUOCPs in water was consistent throughout XJ, but that in sediments was not uniform, indicating a stronger impact of floods on water than on sediments. Water-sediment partition coefficients were generally >2 L g⁻¹, showing a tendency of CUOCP dominance in sediments. The results of principal component analysis and cluster analysis showed that the occurrence of CUOCPs is significantly affected by exogenous disturbance, which could be flood events; meanwhile, clusters of CUOCPs were found in both water and sediments in the source-limited middle reaches in urban areas. Redundancy analysis (RDA) showed that CUOCP occurrences were not positively correlated with nutrient elements (nitrogen and phosphorus), but related to pH and dissolved oxygen (DO), indicating complex sources.
Показать больше [+] Меньше [-]Multi-spectroscopic investigation of the molecular weight distribution and copper binding ability of dissolved organic matter in Dongping Lake, China
2022
Fan, Tuantuan | Yao, Xin | Ren, Haoyu | Ma, Feiyang | Liu, Li | Huo, Xiaojia | Lin, Tong | Zhu, Haiyan | Zhang, Yinghao
The properties and metal-binding abilities of dissolved organic matter (DOM) rely on its molecular weight (MW) structure. In this study, the spatial differences of DOM in compositions, MW structures, and binding mechanisms with copper (Cu²⁺) in Dongping Lake were investigated by applying excitation-emission matrix combining parallel factor analysis (EEM-PARAFAC), synchronous fluorescence (SF) spectra, two-dimensional correlation spectra (2D-COS), and Fourier transform infrared (FTIR) spectra. The EDOM for the entrance of the Dawen River and PDOM for the macrophyte-dominated region were divided from DOM of Dongping Lake based on hierarchical clustering analysis (HCA) and principal component analysis (PCA) and were size-fractioned into MW < 500 kDa and <100 kDa fractions. According to EEM-PARAFAC, Dongping Lake was dominated by tryptophan-like substances with MW < 500 kDa. The concentration of PDOM was higher than that of EDOM (p < 0.05). 2D-COS showed that protein-like components preceded humic-like components binding to Cu²⁺ regardless of sample type (215 nm > 285 nm > 310–360 nm). The Cu²⁺ binding capacity of DOM exhibited specific differences in space, components, and molecular weights. The humic-like component 1 (C1) and tryptophan-like component 4 (C4) of PDOM showed stronger binding abilities than those of EDOM. Endogenous tryptophan-like component 4 (C4) had a higher binding affinity for Cu²⁺ than humic-like components (logKₐ: C4 > C1 > C2) in PDOM irrespective of MW. Humic-like components with MW < 500 kDa displayed higher binding potentials for Cu²⁺. FTIR spectra showed that the main participants of DOM-Cu complexation included aromatic hydrocarbons, aliphatic groups, amide Ⅰ bands, and carboxyl functional groups. This study provides spatial-scale insights into the molecular weight structure of DOM in influencing the behavior, fate, and bioavailability of heavy metals in lakes.
Показать больше [+] Меньше [-]Long-distance transport of per- and polyfluoroalkyl substances (PFAS) in a Swedish drinking water aquifer
2022
Sörengård, Mattias | Bergström, Sofia | McCleaf, Philip | Wiberg, Karin | Ahrens, Lutz
Use of per- and polyfluoroalkyl substance (PFAS)-containing aqueous film-forming foams (AFFF) at firefighting training sites (FFTS) has been linked to PFAS contamination of drinking water. This study investigated PFAS transport and distribution in an urban groundwater aquifer used for drinking water production that has been affected by PFAS-containing AFFF. Soil, sediment, surface water and drinking water were sampled. In soil (n = 12) at a FFTS with high perfluorooctane sulfonate (PFOS) content (87% of ∑PFAS), the ∑PFAS concentration (n = 26) ranged from below detection limit to 560 ng g⁻¹ dry weight. In groundwater (n = 28), the ∑PFAS concentration near a military airbase FFTS reached 1000 ng L⁻¹. Principal component analysis (PCA) identified the military FFTS as the main source of PFAS contamination in drinking water wellfields >10 km down-gradient. Groundwater samples taken close to the military FFTS site showed no ∑PFAS concentration change between 2013 and 2021, while a location further down-gradient showed a transitory 99.6% decrease. Correlation analysis on PFAS composition profile indicated that this decrease was likely caused by dilution from an adjacent conflating aquifer. ∑PFAS concentration reached 15 ng L⁻¹ (PFOS 47% and PFHxS 41% of ∑PFAS) in surface river water (n = 6) and ranged between 1 ng L⁻¹ and 8 ng L⁻¹ (PFHxS 73% and PFBS 17% of ∑PFAS) in drinking water (n = 4). Drinking water had lower PFAS concentrations than the wellfields due to PFAS removal at the water treatment plant. This demonstrates the importance of monitoring PFAS concentrations throughout a groundwater aquifer, to better understand variations in transport from contamination sources and resulting impacts on PFAS concentrations in drinking water extraction areas.
Показать больше [+] Меньше [-]Arsenic and cadmium induced macronutrient deficiencies trigger contrasting gene expression changes in rice
2022
Raghuvanshi, Rishiraj | Raut, Vaibhavi V. | Pandey, Manish | Jeyakumar, Subbiah | Verulkar, Satish | Suprasanna, Penna | Srivastava, Ashish Kumar
Arsenic (As) and cadmium (Cd), two major carcinogenic heavy metals, enters into human food chain by the consumption of rice or rice-based food products. Both As and Cd disturb plant-nutrient homeostasis and hence, reduces plant growth and crop productivity. In the present study, As/Cd modulated responses were studied in non-basmati (IR-64) and basmati (PB-1) rice varieties, at physiological, biochemical and transcriptional levels. At the seedling stage, PB-1 was found more sensitive than IR-64, in terms of root biomass; however, their shoot phenotype was comparable under As and Cd stress conditions. The ionomic data revealed significant nutrient deficiencies in As/Cd treated-roots. The principal component analysis identified NH₄⁺ as As-associated key macronutrient; while, NH₄⁺/NO₃⁻ and K⁺ was majorly associated with Cd mediated response, in both IR-64 and PB-1. Using a panel of 21 transporter gene expression, the extent of nutritional deficiency was ranked in the order of PB-1(As)<IR-64(As)<PB-1(Cd)<IR-64(Cd). A feed-forward model is proposed to explain nutrient deficiency induced de-regulation of gene expression, as observed under Cd-treated IR-64 plants, which was also validated at the level of sulphur metabolism related enzymes. Using urea supplementation, as nitrogen-fertilizer, significant mitigation was observed under As stress, as indicated by 1.018- and 0.794-fold increase in shoot biomass in IR-64 and PB-1, respectively compared to that of control. However, no significant amelioration was observed in response to supplementation of urea under Cd or potassium under As/Cd stress conditions. Thus, the study pinpointed the relative significance of various macronutrients in regulating As- and Cd-tolerance and will help in designing suitable strategies for mitigating As and/or Cd stress conditions.
Показать больше [+] Меньше [-]Soil toxic elements determination using integration of Sentinel-2 and Landsat-8 images: Effect of fusion techniques on model performance
2022
Khosravi, Vahid | Gholizadeh, Asa | Saberioon, Mohammadmehdi
Finding an appropriate satellite image as simultaneous as possible with the sampling time campaigns is challenging. Fusion can be considered as a method of integrating images and obtaining more pixels with higher spatial, spectral and temporal resolutions. This paper investigated the impact of Landsat 8-OLI and Sentinel-2A data fusion on prediction of several toxic elements at a mine waste dump. The 30 m spatial resolution Landsat 8-OLI bands were fused with the 10 m Sentinel-2A bands using various fusion techniques namely hue-saturation-value (HSV), Brovey, principal component analysis (PCA), Gram-Schmidt (GS), wavelet, and area-to-point regression kriging (ATPRK). ATPRK was the best method preserving both spectral and spatial features of Landsat 8-OLI and Sentinel-2A after fusion. Furthermore, the partial least squares regression (PLSR) model developed on genetic algorithm (GA)-selected laboratory visible-near infrared-shortwave infrared (VNIR–SWIR) spectra yielded more accurate prediction results compared to the PLSR model calibrated on the entire spectra. It was hence, applied to both individual sensors and their ATPRK-fused image. In case of the individual sensors, except for As, Sentinel-2A provided more robust prediction models than Landsat 8-OLI. However, the best performances were obtained using the fused images, highlighting the potential of data fusion to enhance the toxic elements’ prediction models.
Показать больше [+] Меньше [-]Distribution and source of and health risks associated with polybrominated diphenyl ethers in dust generated by public transportation
2022
Jin, Mantong | Zhang, Shunfei | Ye, Nanxi | Zhou, Shanshan | Xu, Ziyu
Carcinogenic and neurotoxic polybrominated diphenyl ethers (PBDEs) are environmentally ubiquitous and have been widely investigated. However, little is understood regarding their pollution status, sources, and potential risk to persons in public transportation microenvironments (PTMs). We collected 60 dust samples from PTMs and then selected four materials typical of bus interiors to determine the sources of PBDEs in dust using principal component analysis coupled with Mantel tests. We then evaluated the risk of PBDEs to public health using Monte Carlo simulations. We found that PBDE concentrations in dust were 2-fold higher in buses than at bus stops and that brominated diphenyl ether (BDE)-209 was the main pollutant. The number of buses that passed through a bust stop contributed to the extent of PBDE pollution, and the primary potential sources of PBDEs in dust were plastic handles and curtains inside buses; BDE-209 and BDE-154 were the main contributors of pollution. We found that health risk was 8-fold higher in toddlers than in adults and that the reference doses of PBDEs in dust were far below the United States Environmental Protection Agency limits. Our findings provide a scientific basis that may aid in preventing PBDE pollution and guiding related pollution management strategies in PTMs.
Показать больше [+] Меньше [-]