Уточнить поиск
Результаты 1-10 из 276
Studies on removal of Zinc and Chromium from aqueous solutions using water Hyacinth Полный текст
2015
Swarnalatha, K. | Radhakrishnan, Bindhu
Phytoremediation is an eco-friendly method for removal of pollutants, which can be relied upon as a sustainable technology, if implemented under optimum conditions of plant growth. The effectiveness of water hyacinth, a topical weed, for the removal of Zinc (Zn) and Chromium (Cr) ions from aqueous solutions has been presented in this article. The potential of this plant in removing metals by phytoremediation was explored under various environmental factors such as pH, salinity, metal concentrations, available nutrients, and so on. The efficiency of metal removal was observed by varying the different parameters. It was found that the maximum removal of metals occurred at a neutral pH, low amount of salinity, lower metal ion concentrations, and lack of nutrients. The stress induced in a plant by metal absorption was visible from the health and growth pattern of the plants. The stress on water hyacinth due to metals was also assessed, by observing the changes in its chlorophyll and protein content.
Показать больше [+] Меньше [-]New insights into the functioning and structure of the PE and PP plastispheres from the Mediterranean Sea Полный текст
2022
Delacuvellerie, A. | Géron, A. | Gobert, S. | Wattiez, R.
Plastic debris are accumulating in the marine environment and aggregate microorganisms that form a new ecosystem called the plastisphere. Better understanding the plastisphere is crucial as it has self-sufficient organization and carries pathogens or organisms that may be involved in the pollutant adsorption and/or plastic degradation. To date, the plastisphere is mainly described at the taxonomic level and the functioning of its microbial communities still remains poorly documented. In this work, metagenomic and metaproteomic analyzes were performed on the plastisphere of polypropylene and polyethylene plastic debris sampled on a pebble beach from the Mediterranean Sea. Our results confirmed that the plastisphere was organized as self-sufficient ecosystems containing highly active primary producers, heterotrophs and predators such as nematode. Interestingly, the chemical composition of the polymer did not impact the structure of the microbial communities but rather influenced the functions expressed. Despite the fact that the presence of hydrocarbon-degrading bacteria was observed in the metagenomes, polymer degradation metabolisms were not detected at the protein level. Finally, hydrocarbon degrader (i.e., Alcanivorax) and pathogenic bacteria (i.e., Vibrionaceae) were observed in the plastispheres but were not very active as no proteins involved in polymer degradation or pathogeny were detected. This work brings new insights into the functioning of the microbial plastisphere developed on plastic marine debris.
Показать больше [+] Меньше [-]Physiological responses of pumpkin to zinc oxide quantum dots and nanoparticles Полный текст
2022
Xu, Xinxin | Zhao, Chenchen | Qian, Kun | Sun, Min | Hao, Yi | Han, Lanfang | Wang, Cuiping | Ma, Chuanxin | White, Jason C. | Xing, Baoshan
The present study investigated that the potential of soil or foliar applied 15 mg/L zinc oxide quantum dots (ZnO QD, 11.7 nm) to enhance pumpkin (Cucurbita moschata Duch.) growth and biomass in comparison with the equivalent concentrations of other sizes of ZnO particles, ZnO nanoparticles (ZnO NPs, 43.3 nm) and ZnO bulk particles (ZnO BPs, 496.7 nm). In addition, ZnSO4 was used to set a Zn²⁺ ionic control. For foliar exposure, ZnO QD increased dry mass by 56% relative to the controls and values were 17.3% greater than that of the ZnO NPs particles. The cumulative water loss in the ZnO QD treatment was 10% greater than with ZnO NPs, suggesting that QD could better enhance pumpkin growth. For the root exposure, biomass and accumulative water loss equivalent across all Zn treatments. No adverse effects in terms of pigment (chlorophyll and anthocyanin) contents were evident across all Zn types regardless exposure routes. Foliar exposure to ZnO QD caused 40% increases in shoot Zn content as compared to the control; the highest Zn content was evident in the Zn²⁺ ionic treatment, although this did not lead to growth enhancement. In addition, the shoot and root content of other macro- and micro-nutrients were largely equivalent across all the treatments. The contents of other nutritional compounds, including amino acids, total protein and sugar, were also significantly increased by foliar exposure of ZnO QD. The total protein in the ZnO QD was 53% higher than the ZnO particle treatments in the root exposure group. Taken together, our findings suggest that ZnO QDs have significant potential as a novel and sustainable nano-enabled agrichemical and strategies should be developed to optimize benefit conferred to amended crops.
Показать больше [+] Меньше [-]Multiple-stressor effects of ocean acidification, warming and predation risk cues on the early ontogeny of a rocky-shore keystone gastropod Полный текст
2022
Manríquez, Patricio H. | Jara, María Elisa | González, Claudio P. | Jeno, Katherine | Domenici, P. (Paolo) | Watson, Sue-Ann | Duarte, Cristian | Brokordt, Katherina
To understand how climate change stressors might affect marine organisms and support adequate projections it is important to know how multiple stressors may be modulated by the presence of other species. We evaluated the direct effects of ocean warming (OW) and ocean acidification (OA) together with non-consumptive effects (NCEs) of the predatory crab Acanthocyclus hassleri on early ontogeny fitness-related traits of the commercially important rocky-shore keystone gastropod Concholepas concholepas. We measured the response of nine traits to these stressors at either the organismal level (survival, growth, feeding rates, tenacity, metabolic rate, calcification rate) or sub-organismal level (nutritional status, ATP-supplying capacity, stress condition). C. concholepas survival was not affected by any of the stressors. Feeding rates were not affected by OW or OA; however, they were reduced in the presence of crab NCEs compared with control conditions. Horizontal tenacity was affected by the OA × NCEs interaction; in the presence of NCEs, OA reduced tenacity. The routine metabolic rate, measured by oxygen consumption, increased significantly with OW. Nutritional status assessment determined that carbohydrate content was not affected by any of the stressors. However, protein content was affected by the OA × NCEs interaction; in the absence of NCEs, OA reduced protein levels. ATP-supplying capacity, measured by citrate synthase (CS) activity, and cellular stress condition (HSP70 expression) were reduced by OA, with reduction in CS activity found particularly at the high temperature. Our results indicate C. concholepas traits are affected by OA and OW and the effects are modulated by predator risk (NCEs). We conclude that some C. concholepas traits are resilient to climate stressors (survival, growth, horizontal tenacity and nutritional status) but others are affected by OW (metabolic rate), OA (ATP-supplying capacity, stress condition), and NCEs (feeding rate). The results suggest that these negative effects can adversely affect the associated community.
Показать больше [+] Меньше [-]Associations between organophosphate esters concentrations and markers of liver function in US adolescents aged 12–19 years: A mixture analysis Полный текст
2022
Li, Ruiqiang | Zhan, Wenqiang | Ren, Jingyi | Gao, Xian | Huang, Xin | Ma, Yuxia
Liver disease has become a growing health burden, and little is known about the impairment of liver function caused by exposure to organophosphate esters (OPEs) in adolescents aged 12–19 years in the United States. To investigate the relationship between urinary metabolites of OPEs including diphenyl phosphate (DPHP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP), bis(1-chloroethyl) phosphate (BCPP), bis(2-chloroethyl) phosphate (BCEP), and dibutyl phosphate (DBUP) and liver function in US adolescents aged 12–19 years. Liver function tests (LFTs) include aspartate aminotransferase (AST), albumin (ALB), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), total bilirubin (TBIL), total protein (TP), and AST/ALT. Meanwhile, potential confounding and interaction effects were assessed. The study sample included 592 adolescents aged 12–19 from two consecutive NHANES cycles (2011–2012, 2013–2014). A composite statistical strategy combining traditional linear regression with advanced multi-pollutant models quantile based g-computation (QGC) and eXtreme Gradient Boosting (XGBoost) regression was used to analyze the joint effects of multiple OPEs on liver function indicators, and to describe the interaction between different OPEs in detail. 592 adolescent participants were 15 (14–17) years old, with similar numbers of males and females (304 vs. 288). The analysis results showed that (1) in the linear regression model, individual DPHP, BCEP exposure and ALP changes, BCEP and AST/ALT changes were positively associated. DPHP, BDCPP were negatively associated with TP changes. (2) The combined effects of various OPEs on ALB, ALT, ALP, GGT, TBIL, TP, and AST/ALT were statistically significant. (3) There is no potential interaction between different OPEs. Several OPEs and their combinations are closely related to the 8 LFT indicators. In addition, data suggest that exposure to OPEs in adolescents may be associated with liver damage. Due to limited evidence in the literature and potential limitations of the current study, our findings require more studies to confirm.
Показать больше [+] Меньше [-]Safety of composts consisting of hydrothermally treated penicillin fermentation residue: Degradation products, antibiotic resistance genes and bacterial diversity Полный текст
2021
Ren, Jianjun | Deng, Liujie | Li, Chunyu | Dong, Liping | Li, Zhijie | Zhao, Jian | Huhetaoli, | Zhang, Jin | Niu, Dongze
Combining hydrothermal treatment and composting is an effective method to dispose of penicillin fermentation residue (PFR), but the safety and related mechanism are still unclear. In this study, penicillin solution was hydrothermally treated to decipher its degradation mechanism, and then hydrothermally treated PFR (HT-PFR) was mixed with bulking agents at ratios of 2:0 (CK), 2:1.5 (T1), and 2:5 (T2) to determine the absolute abundance of antibiotic resistance genes (ARGs) and the succession of bacterial community. Results showed that penicillin was degraded to several new compounds without the initial lactam structure after hydrothermal treatment. During composting, temperature and pH of the composts increased with the raising of HT-PFR proportion, except the pH at days 2. After 52 days of composting, the absolute copies of ARGs (blaTEM, blaCMY2, and blaSFO) and the relative abundance of bacteria related to pathogens were reduced significantly (P < 0.05). Especially, the total amount of ARGs in the samples of CK and T1 were decreased to equal level (around 5 log₁₀ copies/g), which indicated that more ARGs were degraded in the latter by the composting process. In the CK samples, Bacteroidetes and Proteobacteria accounted for ~69.8% of the total bacteria, but they were gradually replaced by Firmicutes with increasing proportions of HT-PFR, which can be caused by the high protein content in PFR. Consisting with bacterial community, more gram-positive bacteria were observed in T1 and T2, and most of them are related to manganese oxidation and chitinolysis. As composting proceeded, bacteria having symbiotic or pathogenic relationships with animals and plants were reduced, but those related to ureolysis and cellulolysis were enriched. Above all, hydrothermal treatment is effective in destroying the lactam structure of penicillin, which makes that most ARGs and pathogenic bacteria are eliminated in the subsequent composting.
Показать больше [+] Меньше [-]Foragers of Africanized honeybee are more sensitive to fungicide pyraclostrobin than newly emerged bees Полный текст
2020
Eduardo da Costa Domingues, Caio | Bello Inoue, Lais Vieira | Mathias da Silva-Zacarin, Elaine Cristina | Malaspina, Osmar
The honeybee has economic importance both for the commercial value of bee products and for its role in the pollination of agricultural crops. Despite the fact that the fungicides are widely used in agriculture, studies comparing the effects of this group of pesticides on bees are still scarce. There are many gaps preventing the understanding of bees’ responses to exposure to fungicides, including the influence of the age of the exposed workers. However, this study aimed to compare the effects of residual concentrations of pyraclostrobin on young and old bees of Africanized Apis mellifera. The parameters analyzed were the survival rates, as well as the histopathological and histochemical changes in midgut of orally exposed workers to different sublethal concentrations of this strobilurin fungicide: 0.125 ng a.i./μL (C1), 0.025 ng a.i./μL (C2) e 0.005 ng a.i./μL (C3). The results showed a significant decrease in the longevity only for old bees exposed to the three concentrations of pyraclostrobin. After the five-day exposure period, the fungicide induced sublethal effects in the midgut only from the old bees. These effects were the increase both in cytoplasmic vacuolization of digestive cells and morphological changes in the nests of regenerative cells, which reflected in the higher lesion index of organ for groups C1 and C2. Additionally, there was a reduction in total protein staining in the intestinal epithelium in C1 and C2. At the same exposure period, the midgut of young bees presented only a reduction in the staining of neutral polysaccharides in the group C1. Concluding, old workers are more sensitive to the fungicide than young workers. This study showed different responses according to worker age, which can affect the maintenance of colony health. Future studies should take into account the age of the workers to better understand the effects of fungicides on bees.
Показать больше [+] Меньше [-]Waterborne Cu exposure increased lipid deposition and lipogenesis by affecting Wnt/β-catenin pathway and the β-catenin acetylation levels of grass carp Ctenopharyngodon idella Полный текст
2020
Xu, Yi-Chuang | Xu, Yi-Huan | Zhao, Tao | Wu, Li-Xiang | Yang, Shui-Bo | Luo, Zhi
Lipid metabolism could be used as a biomarker for environmental monitoring of metal pollution, including Cu. Given the potential role of the Wnt/β-catenin signaling pathway and acetylation in lipid metabolism, the aim of this study was to investigate the mechanism of Wnt signaling and acetylation mediating Cu-induced lipogenesis. Grass carp Ctenopharyngodon idella, widely distributed freshwater teleost, were used as the model. We found that waterborne Cu exposure increased the accumulation of Cu and lipid, up-regulated lipogenesis, suppressed Wnt signaling, reduced β-catenin protein level and its nuclear location, reduced the sirt1 mRNA levels and up-regulated the β-catenin acetylation level. Further investigation found that Cu up-regulated lipogenesis through Wnt/β-catenin pathway; Cu regulated the β-catenin acetylation, and K311 was the key acetylated residue after Cu incubation. SIRT1 mediated Cu-induced changes of acetylated β-catenin and played an essential role in nuclear accumulation of β-catenin and Cu-induced lipogenesis. Cu facilitated lipid accumulation via the regulation of Wnt pathway by SIRT1. For the first time, our study uncovered the novel mechanism for Wnt/β-catenin pathway and β-catenin acetylation levels mediating Cu-induced lipid deposition, which provided insights into the association between Cu exposure and lipid metabolism in fish and had important environmental implications for monitoring metal pollution in the water by using new biomarkers involved in lipid metabolism.
Показать больше [+] Меньше [-]Effect of microplastics PAN polymer and/or Cu2+ pollution on the growth of Chlorella pyrenoidosa Полный текст
2020
Lin, Wei | Su, Fang | Lin, Maozi | Jin, Meifang | Li, Yuanheng | Ding, Kewu | Chen, Qinhua | Qian, Qingrong | Sun, Xiaoli
Polyacrylonitrile polymer (PAN), a common representative textile material and a microplastic, has significant influence on phytoplankton algae, especially with co-exposure with other pollutants, e.g. Cu²⁺. In the present study, we carried out experiments to reveal the population size variation trends of Chlorella pyrenoidosa over time (during a whole growth cycle of 6 days) under PAN and/or Cu²⁺. The levels of pigments (chlorophyll a, b, total chlorophyll and carotenoids), chlorophyll a fluorescence parameters, and other physiological and biochemical indices, containing total protein measurements of H₂O₂, catalase (CAT), and malondialdehyde (MDA) under different treatment groups were measured to explain the physio-ecological mechanism of the effect of PAN and/or Cu²⁺ on the growth of C. pyrenoidosa. The results showed that PAN, Cu²⁺ and the combination of PAN and Cu²⁺ inhibited the growth of C. pyrenoidosa. Chlorophyll a and b decreased significantly with increasing levels of pollutants (PAN and/or Cu²⁺); however, the carotenoid levels increased with increasing levels of pollutants (PAN and/or Cu²⁺) for the first three cultivation days. The oxygen-evolving complexes (OECs) of C. pyrenoidosa had been damaged under Cu²⁺ pollution. The results also showed that CAT activity, MDA content and H₂O₂ activity of C. pyrenoidosa increased with increasing levels of pollutants (PAN and/or Cu²⁺); however, total protein content decreased with increasing levels of pollutants (PAN and/or Cu²⁺) at the first cultivation day. These results indicate that pollutants (PAN and/or Cu²⁺) are harmful to the growth of the C. pyrenoidosa population and negatively affect the levels and function of the pigments in C. pyrenoidosa by decreasing chlorophyll a and b levels, increasing carotenoid levels, and increasing antioxidant enzyme activity.
Показать больше [+] Меньше [-]Impact of chronic exposure to trichlorfon on intestinal barrier, oxidative stress, inflammatory response and intestinal microbiome in common carp (Cyprinus carpio L.) Полный текст
2020
Chang, Xulu | Wang, Xianfeng | Feng, Junchang | Su, Xi | Liang, Junping | Li, Hui | Zhang, Jianxin
Trichlorfon is an organic phosphorus pesticide used to control different parasitic infections in aquaculture. The repeated, excessive use of trichlorfon can result in environmental pollution, thus affecting human health. This study aimed to determine the effects of different concentrations of trichlorfon (0, 0.1, 0.5 and 1.0 mg/L) on the intestinal barrier, oxidative stress, inflammatory response and intestinal microbiome of common carp. Trichlorfon exposure significantly reduced the height of intestinal villus and decreased the expression levels of tight junction genes, such as claudin-2, occludin and ZO-1, in common carp. Moreover, the activities of antioxidant enzymes, such as CAT, SOD and GSH-Px, exhibited a decreasing trend with increasing trichlorfon concentrations, while the contents of MDA and ROS elevated in the intestinal tissues of common carp. The mRNA and protein levels of pro-inflammatory cytokines TNF-α and IL-1β were significantly upregulated by trichlorfon exposure. The level of anti-inflammatory cytokine TGF-β was remarkably higher in 1.0 mg/L trichlorfon treatment group compared to control group. In addition, the results demonstrated that trichlorfon exposure could affect the microbiota community composition and decreased the community diversity in the gut of common carp. Notably, the proportions of some probiotic bacteria, namely, Lactobacillus, Bifidobacterium and Akkermansia, were observed to be reduced after trichlorfon exposure. In summary, the findings of this study indicate that exposure to different concentrations of trichlorfon can damage intestinal barrier, induce intestinal oxidative damage, trigger inflammatory reaction and alter gut microbiota structure in common carp.
Показать больше [+] Меньше [-]