Уточнить поиск
Результаты 1-10 из 19
Influence of food (ciliate and phytoplankton) on the trophic transfer of inorganic and methyl-mercury in the Pacific cupped oyster Crassostrea gigas
2020
Metian, Marc | Pouil, Simon | Dupuy, Christine | Teyssié, Jean-Louis | Warnau, Michel | Bustamante, Paco
Diet is an important route of mercury (Hg) uptake in marine organisms. Trophic transfer of Hg throughout the food webs may be influenced by various factors, including diet and Hg speciation. Bivalves such as oysters are widely used as bioindicators of trace element pollution such as Hg. Nevertheless, our current knowledge regarding their ability to accumulate Hg from their diet is mainly based on experiments performed using phytoplankton. In their natural environment, oysters feed on a variety of food items including ciliates, detritus, in addition to phytoplankton. The present study aimed at examining the influence of diet composition on the trophic transfer of inorganic Hg (iHg) and methylmercury (MeHg) in the Pacific cupped oyster Crassostrea gigas. The pulse-chase feeding method was used with two radiolabeled food items: a heterotrophic protist (Uronema marinum) and a phytoplanktonic diatom (Thalassiosira pseudonana). Depuration of dietary Hg in the oysters was followed for 50 d. Kinetic parameters including assimilation efficiency (AE) and efflux rate constant (kₑ) were calculated. Our results showed that oysters fed on ciliates assimilated 96 ± 1% and 31 ± 2% of the ingested MeHg and iHg, respectively whereas these elements were similarly assimilated in the oysters fed on phytoplankton (78 ± 3% and 86 ± 4% for MeHg and iHg, respectively). Mercury assimilation in oyster is thus diet dependent (significant differences in AE, p < 0.05), metal species-dependent and likely resulting from variations in Hg bioavailability in the two food items tested and a gut passage time-dependent of the ingested matrix.
Показать больше [+] Меньше [-]Silver stress differentially affects growth of phototrophic and heterotrophic chrysomonad flagellate populations
2019
Böck, Christina | Zimmermann, Sonja | Beisser, Daniela | Dinglinger, Sarah-Maria | Engelskirchen, Simone | Giesemann, Philipp | Klink, Saskia | Olefeld, Jana Laura | Rahmann, Sven | Vos, Matthijs | Boenigk, Jens | Sures, Bernd
Silver ions are among the predominant anthropogenic introduced pollutants in aquatic systems. As silver has effects on species at all trophic levels the community composition in aquatic habitats can be changed as a result of silver stress. The response of planktonic protists to environmental stressors is particularly important as they act both as producers and consumers in complex planktonic communities. Chrysomonad flagellates are of major interest, since this group includes heterotrophic, mixotrophic and phototrophic taxa, and therefore allows analysis of silver stress in organisms with contrasting nutritional strategies independent of a potential taxonomic bias. In a series of lab experiments, we compared the response of different trophic chrysophyte strains to low (5 μg L⁻¹), medium (10 μg L⁻¹) and high (20 μg L⁻¹) nominal Ag concentrations in combination with changes in temperature and light intensity (phototrophs), temperature and food concentration (heterotrophs), or a combination of the above settings (mixotrophs). All tested strains were negatively affected by silver in their growth rates. The phototrophic strains reacted strongly to silver stress, whereas light intensity and temperature had only minor effects on growth rates. For heterotrophic strains, high food concentration toned down the effect of silver, whereas temperatures outside the growth optimum had a combined stress effect. The mixotrophic strains reacted differently depending on whether their nutritional mode was dominated by heterotrophy or by phototrophy. The precise response pattern across all variables was uniquely different for every single species we tested. The present work contributes to a deeper understanding of the effects of environmental stressors on complex planktonic communities. It indicates that silver will negatively impact planktonic communities and may create shifts in their composition and functioning.
Показать больше [+] Меньше [-]eDNA-based bioassessment of coastal sediments impacted by an oil spill
2018
Xie, Yuwei | Zhang, Xiaowei | Yang, Jianghua | Kim, Seonjin | Hong, Seongjin | Giesy, John P. | Yim, Un Hyuk | Shim, Won Joon | Yu, Hongxia | Khim, Jong Seong
Oil spills offshore can cause long-term ecological effects on coastal marine ecosystems. Despite their important ecological roles in the cycling of energy and nutrients in food webs, effects on bacteria, protists or arthropods are often neglected. Environmental DNA (eDNA) metabarcoding was applied to characterize changes in the structure of micro- and macro-biota communities of surface sediments over a 7-year period since the occurrence of Hebei Spirit oil spill on December 7, 2007. Alterations in diversities and structures of micro- and macro-biota were observed in the contaminated area where concentrations of polycyclic aromatic hydrocarbons were greater. Successions of bacterial, protists and metazoan communities revealed long-term ecological effects of residual oil. Residual oil dominated the largest cluster of the community-environment association network. Presence of bacterial families (Aerococcaceae and Carnobacteriaceae) and the protozoan family (Platyophryidae) might have conferred sensitivity of communities to oil pollution. Hydrocarbon-degrading bacterial families (Anaerolinaceae, Desulfobacteraceae, Helicobacteraceae and Piscirickettsiaceae) and algal family (Araphid pennate) were resistant to adverse effects of spilt oil. The protistan family (Subulatomonas) and arthropod families (Folsomia, Sarcophagidae Opomyzoidea, and Anomura) appeared to be positively associated with residual oil pollution. eDNA metabarcoding can provide a powerful tool for assessing effects of anthropogenic pollution, such as oil spills on sediment communities and its long-term trends in coastal marine environments.
Показать больше [+] Меньше [-]Plastics, (bio)polymers and their apparent biogeochemical cycle: An infrared spectroscopy study on foraminifera
2021
Birarda, Giovanni | Buosi, Carla | Caridi, Francesca | Casu, Maria Antonietta | De Giudici, Giovanni | Di Bella, Letizia | Medas, Daniela | Meneghini, Carlo | Pierdomenico, Martina | Sabbatini, Anna | Surowka, Artur | Vaccari, Lisa
To understand the fate of plastic in oceans and the interaction with marine organisms, we investigated the incorporation of (bio)polymers and microplastics in selected benthic foraminiferal species by applying FTIR (Fourier Transform Infrared) microscopy. This experimental methodology has been applied to cultured benthic foraminifera Rosalina globularis, and to in situ foraminifera collected in a plastic remain found buried into superficial sediment in the Mediterranean seafloor, Rosalina bradyi, Textularia bocki and Cibicidoides lobatulus. In vitro foraminifera were treated with bis-(2-ethylhexyl) phthalate (DEHP) molecule to explore its internalization in the cytoplasm. Benthic foraminifera are marine microbial eukaryotes, sediment-dwelling, commonly short-lived and with reproductive cycles which play a central role in global biogeochemical cycles of inorganic and organic compounds. Despite the recent advances and investigations into the occurrence, distribution, and abundance of plastics, including microplastics, in marine environments, there remain relevant knowledge gaps, particularly on their effects on the benthic protists. No study, to our knowledge, has documented the molecular scale effect of plastics on foraminifera.Our analyses revealed three possible ways through which plastic-related molecules and plastic debris can enter a biogeochemical cycle and may affect the ecosystems: 1) foraminifera in situ can grow on plastic remains, namely C. lobatulus, R. bradyi and T. bocki, showing signals of oxidative stress and protein aggregation in comparison with R. globularis cultured in negative control; 2) DEHP can be incorporated in the cytoplasm of calcareous foraminifera, as observed in R. globularis; 3) microplastic debris, identified as epoxy resin, can be found in the cytoplasm and the agglutinated shell of T. bocki.We hypothesize that plastic waste and their associated additives may produce modifications related to the biomineralization process in foraminifera. This effect would be added to those induced by ocean acidification with negative consequences on the foraminiferal biogenic carbon (C) storage capacity.
Показать больше [+] Меньше [-]Toxicity of cadmium and zinc to small soil protists
2018
Johansen, Jesper Liengaard | Rønn, Regin | Ekelund, Flemming
Small heterotrophic protists (flagellates and naked amoebae) are very abundant in soil and play a key role in maintaining soil services. Hence, knowledge on how xenobiotics affect these organisms is essential in ecosystem management. Cadmium (Cd) is an increasing environmental issue as both industrial deposition and recycling of heavy metal rich waste products have led to Cd enrichment of soils. Evaluation of toxicity of Cd to micro-organisms is often performed using a solution of pure Cd (e.g. CdCl) in liquid culture. This approach may be highly misleading as interactions between Cd and other substances, e.g. various ions or inherent soil components often strongly modify Cd toxicity. Hence, we compared the toxic effect of Cd to small heterotrophic protists in soil microcosms and liquid culture. We also evaluated how zinc (Zn) affects Cd toxicity, as Zn usually accompanies Cd in a ratio of c. 100:1, and is known to impede Cd toxicity. In the soil microcosms, we also monitored the primary food source of the protists, i.e. culturable bacteria, and used soil respiration as a proxy of soil functioning. Finally, we examined to what extent Cd actually sorbs to soil. We found 1) that c. 10³ times more Cd was required to obtain the same effect in the soil microcosms compared to the liquid culture, 2) that soil sorption explains why Cd, even though highly toxic in aqueous solutions, has very limited effect when applied to soil, and 3) (very surprisingly) that in our experimental systems Zn was as toxic as Cd. Our study suggests that Cd toxicity to soil protists will be small because most Cd in soil will be sorbed to the soil matrix and because the Zn:Cd ratio of 100:1 in most substances, incl. pollutants, will mean that lethal Zn effects will occur before Cd reaches toxic levels.
Показать больше [+] Меньше [-]Contamination with multiple heavy metals decreases microbial diversity and favors generalists as the keystones in microbial occurrence networks
2022
Qi, Qian | Hu, Caixia | Lin, Jiahui | Wang, Xuehua | Tang, Caixian | Dai, Zhongmin | Xu, Jianming
Soil contamination with multiple heavy metals poses threats to human health and ecosystem functioning. Using the Nemerow pollution index, which considers the effects of multiple heavy metals, we compared the diversity and composition of bacteria, fungi and protists and their potential interactions in response to a multi-metal contamination gradient. Multi-metal contamination significantly altered the community composition of bacteria, fungi and protists, and the degree of alteration increased with increasing severity of contamination. The alpha-diversity of bacteria, fungi and protists significantly decreased with increasing contamination level. The dominant generalists, found in all soil samples, were Gammaproteobacteria, Chloroflexi and Bacillus sp, whereas the dominant specialists were Anaerolineaceae, Entoloma sp. and Sandonidae_X sp. The relative abundances of generalists were positively correlated, whereas those of specialists were negatively correlated, with the Nemerow pollution index. In addition, the complexity of the microbial co-occurrence network increased with increasing contamination level. Generalists, rather than specialists, were the keystones in the microbial co-occurrence network and played a crucial role in adaptation to multi-metal contamination through enhanced potential interactions within the entire microbiome. Our results provide insights into the ecological effects of multi-metal contamination on the soil microbiome and will help to develop bio-remediation technologies for contaminated soils.
Показать больше [+] Меньше [-]Effects of soil protists on the antibiotic resistome under long term fertilization
2022
Li, Hong-Zhe | Zhu, Dong | Sun, An-Qi | Qin, Yi-Fei | Lindhardt, Jonathan Hessner | Cui, Li
Soil protists are key in regulating soil microbial communities. However, our understanding on the role of soil protists in shaping antibiotic resistome is limited. Here, we considered the diversity and composition of bacteria, fungi and protists in arable soils collected from a long-term field experiment with multiple fertilization treatments. We explored the effects of soil protists on antibiotic resistome using high-throughput qPCR. Our results showed that long term fertilization had stronger effect on the composition of protists than those of bacteria and fungi. The detected number and relative abundance of antibiotic resistance genes (ARGs) were elevated in soils amended with organic fertilizer. Co-occurrence network analysis revealed that changes in protists may contribute to the changes in ARGs composition, and the application of different fertilizers altered the communities of protistan consumers, suggesting that effects of protistan communities on ARGs might be altered by the top-down impact on bacterial composition. This study demonstrates soil protists as promising agents in monitoring and regulating ecological risk of antibiotic resistome associated with organic fertilizers.
Показать больше [+] Меньше [-]Growth and photosynthetic responses of Ochromonas gloeopara to cadmium stress and its capacity to remove cadmium
2021
Wu, Guangjin | Cheng, Jiahui | Wei, Junjun | Huang, Jing | Sun, Yunfei | Zhang, Lu | Huang, Yuan | Yang, Zhou
Cadmium (Cd) is one of the predominant anthropogenic pollutants in aquatic systems. As Cd has negative effects on species at all trophic levels, the community composition in aquatic habitats can be changed as a result of Cd stress. The response of mixotrophic protists to environmental stressors is particularly important as they act as both producers and consumers in complex planktonic communities. In this study, we used mixotrophic Ochromonas gloeopara to study its growth and photosynthetic responses to Cd, and specially focused on the effects of initial Cd concentrations and nutrient levels on its capacity to remove Cd. Results showed that when Cd concentration reached 0.5 mg L⁻¹, the growth rate and carrying capacity were significantly inhibited, whereas the photosynthesis was markedly decreased when Cd concentration reached 0.15 mg L⁻¹. Moreover, under Cd concentration 0.15, 0.5, 0.9, 1.6, and 2.0 mg L⁻¹, the removal efficiencies of Cd by O. gloeopara were 83.2%, 77.7%, 74.6%, 70.1%, and 68.8%, respectively. The increase of nitrogen did not cause significant effect on the removal capacity of Cd by O. gloeopara, but increased concentration of phosphorus significantly enhanced the removal capacity of Cd. Our findings indicated that the mixotrophic O. gloeopara has strong tolerance and capacity to remove Cd, and increasing concentration of phosphorus can increase its removal capacity, suggesting that O. gloeopara has great potential application value in mitigating Cd pollution in waters.
Показать больше [+] Меньше [-]A multivariate approach of changes in filamentous, nitrifying and protist communities and nitrogen removal efficiencies during ozone dosage in a full-scale wastewater treatment plant
2019
Barbarroja, Paula | Zornoza, Andrés | Aguado, Daniel | Borrás, Luis | Alonso, José Luis
The application of low ozone dosage to minimize the problems caused by filamentous foaming was evaluated in two bioreactors of an urban wastewater treatment plant. Filamentous and nitrifying bacteria, as well as protist and metazoa, were monitored throughout a one-year period by FISH and conventional microscopy to examine the effects of ozone application on these specific groups of microorganisms. Multivariate data analysis was used to determine if the ozone dosage was a key factor determining the low carbon and nitrogen removal efficiencies observed throughout the study period, as well as to evaluate its impact on the biological communities monitored. The results of this study suggested that ozonation did not significantly affect the COD removal efficiency, although it had a moderate effect on ammonia removal efficiency. Filamentous bacteria were the community most influenced by ozone (24.9% of the variance explained by ozone loading rate), whilst protist and metazoa were less affected (11.9% of the variance explained). Conversely, ozone loading rate was not a factor in determining the nitrifying bacterial community abundance and composition, although this environmental variable was correlated with ammonia removal efficiency. The results of this study suggest that different filamentous morphotypes were selectively affected by ozone.
Показать больше [+] Меньше [-]Microplastic and soil protists: A call for research
2018
Rillig, Matthias C. | Bonkowski, Michael
Microplastic is an emerging contaminant of concern in soils globally, probably gradually increasing in soil due to slow degradation. Few studies on microplastic effects on soil biota are available, and no study in a microplastic contamination context has specifically addressed soil protists. Soil protists, a phylogenetically and functionally diverse group of eukaryotic, unicellular soil organisms, are major consumers of bacteria in soils and are potentially important vehicles for the delivery of microplastics into the soil food chain. Here we build a case for focusing research on soil protists by drawing on data from previous, older studies of phagocytosis in protist taxa, which have long made use of polystyrene latex beads (microspheres). Various soil-borne taxa, including ciliates, flagellates and amoebae take up microplastic beads in the size range of a few micrometers. This included filter feeders as well as amoebae which engulf their prey. Discrimination in microplastic particle uptake depended on species, physiological state as well as particle size. Based on the results of the studies we review here, there is now a need to study microplastic effects in a pollution ecology context: this means considering a broad range of particle types under realistic conditions in the soil, and exploring longer-term effects on soil protist communities and functions.
Показать больше [+] Меньше [-]