Уточнить поиск
Результаты 1-10 из 298
Correlation Study of Meteorological Parameters and Criteria Air Pollutants in Jiangsu Province, China Полный текст
2022
Johnson, Anbu Clemensis
Air pollution is a global issue and meteorological factors play an important role in its transportationand regional concentration. The current research is aimed to analyse the variations in meteorologicalparameters in a seasonal and geographical location context in the Jiangsu province of China, and itscorrelation with the six criteria air pollutants, and air quality index (AQI). The present analysis willsupplement the limited understanding on the relation between the regions prevalent climatic conditionsand atmospheric pollution. The meteorological data analysis showed Suzhou city located in thesouthern region of the Jiangsu province with high average temperature, relative humidity, and rainfall.Maximum values of temperature, UV index, sunshine, relative humidity, and rainfall occurred duringsummer, while air pressure in winter. High values of all meteorological parameters occurred in thenorthern and southern region of the province. The data correlation study revealed AQI to havenegative correlation with most meteorological parameters, and positive correlation with air pressure inall cities.
Показать больше [+] Меньше [-]Characteristics, source apportionment and long-range transport of black carbon at a high-altitude urban centre in the Kashmir valley, North-western Himalaya Полный текст
2022
Bhat, Mudasir Ahmad | Romshoo, Shakil Ahmad | Beig, Gufran
Six years of data (2012–2017) at an urban site-Srinagar in the Northwest Himalaya were used to investigate temporal variability, meteorological influences, source apportionment and potential source regions of BC. The daily BC concentration varies from 0.56 to 40.16 μg/m³ with an inter-annual variation of 4.20–7.04 μg/m³ and is higher than majority of the Himalayan urban locations. High mean annual BC concentration (6.06 μg/m³) is attributed to the high BC observations during winter (8.60 μg/m³) and autumn (8.31 μg/m³) with a major contribution from Nov (13.88 μg/m³) to Dec (13.4 μg/m³). A considerable inter-month and inter-seasonal BC variability was observed owing to the large changes in synoptic meteorology. Low BC concentrations were observed in spring and summer (3.14 μg/m³ and 3.21 μg/m³), corresponding to high minimum temperatures (6.6 °C and 15.7 °C), wind speed (2.4 and 1.6 m/s), ventilation coefficient (2262 and 2616 m²/s), precipitation (316.7 mm and 173.3 mm) and low relative humidity (68% and 62%). However, during late autumn and winter, frequent temperature inversions, shallow PBL (173–1042 m), stagnant and dry weather conditions cause BC to accumulate in the valley. Through the observation period, two predominant diurnal BC peaks were observed at ⁓9:00 h (7.75 μg/m³) and ⁓21:00 h (6.67 μg/m³). Morning peak concentration in autumn (11.28 μg/m³) is ⁓2–2.5 times greater than spring (4.32 μg/m³) and summer (5.23 μg/m³), owing to the emission source peaks and diurnal boundary layer height. Diurnal BC concentration during autumn and winter is 65% and 60% higher than spring and summer respectively. During autumn and winter, biomass burning contributes approximately 50% of the BC concentration compared to only 10% during the summer. Air masses transport considerable BC from the Middle East and northern portions of South Asia, especially the Indo-Gangetic Plains, to Srinagar, with serious consequences for climate, human health, and the environment.
Показать больше [+] Меньше [-]Contribution of liquid water content enhancing aqueous phase reaction forming ambient particulate nitrosamines Полный текст
2022
Choi, Na Rae | Park, Seungshik | Ju, Seoryeong | Lim, Yong Bin | Lee, Ji Yi | Kim, Eunhye | Kim, Soontae | Shin, Hye Jung | Kim, Yong Pyo
Contribution of liquid water content (LWC) to the levels of the carcinogenic particulate nitro(so) compounds and the chemistry affecting LWC were investigated based on the observation of seven nitrosamines and two nitramines in rural (Seosan) and urban (Seoul) area in South Korea during October 2019 and a model simulation. The concentrations of both the total nitrosamines and nitramines were higher in Seosan (12.48 ± 16.12 ng/m³ and 0.65 ± 0.71 ng/m³, respectively) than Seoul (7.41 ± 13.59 ng/m³ and 0.24 ± 0.15 ng/m³, respectively). The estimated LWC using a thermodynamic model in Seosan (12.92 ± 9.77 μg/m³) was higher than that in Seoul (6.20 ± 5.35 μg/m³) mainly due to higher relative humidity (75 ± 9% (Seosan); 62 ± 10% (Seoul)) and higher concentrations of free ammonia (0.13 ± 0.09 μmol/m³ (Seosan); 0.08 ± 0.01 μmol/m³ (Seoul)) and total nitric acid (0.09 ± 0.07 μmol/m³ (Seosan); 0.04 ± 0.02 μmol/m³ (Seoul)) in Seosan while neither fog nor rain occurred during the sampling period. The relatively high concentrations of the particulate nitrosamines (>30 ng/m³) only observed probably due to the higher LWC (>10 μg/m³) in Seosan. It implies that aqueous phase reactions involving NO₂ and/or uptake from the gas phase enhanced by LWC could be promoted in Seosan. Strong correlation between the concentrations of nitrosodi-methylamine (NDMA), an example of nitrosamines, simulated by a kinetic box model including the aqueous phase reactions and the measured concentration of NDMA in Seosan (R = 0.77; 0.37 (Seoul)) indicates that the aqueous phase reactions dominantly enhanced the NDMA concentrations in Seosan. On the other hand, it is estimated that the formation of nitrosamines by aqueous phase reaction was not significant due to the relatively lower LWC in Seoul compared to that in Seosan. Furthermore, it is presumed that nitramines are mostly emitted from the primary emission sources. This study implies that the concentration of the particulate nitrosamines can be promoted by aqueous phase reaction enhanced by LWC.
Показать больше [+] Меньше [-]Size−resolved source apportionment of particulate matter from a megacity in northern China based on one-year measurement of inorganic and organic components Полный текст
2021
Tian, Yingze | Harrison, Roy M. | Feng, Yinchang | Shi, Zongbo | Liang, Yongli | Li, Yixuan | Xue, Qianqian | Xu, Jingsha
This research apportioned size-resolved particulate matter (PM) contributions in a megacity in northern China based on a full year of measurements of both inorganic and organic markers. Ions, elements, carbon fractions, n-alkanes, polycyclic aromatic hydrocarbons (PAHs), hopanes and steranes in 9 p.m. size fractions were analyzed. High molecular weight PAHs concentrated in fine PM, while most other organic compounds showed two peaks. Both two-way and three-way receptor models were used for source apportionment of PM in different size ranges. The three-way receptor model gave a clearer separation of factors than the two-way model, because it uses a combination of chemical composition and size distributions, so that factors with similar composition but distinct size distributions (like more mature and less mature coal combustion) can be resolved. The three-way model resolved six primary and three secondary factors. Gasoline vehicles and coal and biomass combustion, nitrate and high relative humidity related secondary aerosol, and resuspended dust and diesel vehicles (exhaust and non-exhaust) are the top two contributors to pseudo-ultrafine (<0.43 μm), fine (0.43–2.1 μm) and coarse mode (>2.1 μm) PM, respectively. Mass concentration of PM from coal and biomass combustion, industrial emissions, and diesel vehicle sources showed a bimodal size distribution, but gasoline vehicles and resuspended dust exhibited a peak in the fine and coarse mode, separately. Mass concentration of sulphate, nitrate and secondary organic aerosol exhibited a bimodal distribution and were correlated with temperature, indicating strong photochemical processing and repartitioning. High relative humidity related secondary aerosol was strongly associated with size shifts of PM, NO₃⁻ and SO₄²⁻ from the usual 0.43–0.65 μm to 1.1–2.1 μm. Our results demonstrated the dominance of primary combustion sources in the <0.43 μm particle mass, in contrast to that of secondary aerosol in fine particle mass, and dust in coarse particle mass in the Northern China megacity.
Показать больше [+] Меньше [-]Traditional and novel organophosphate esters (OPEs) in PM2.5 of a megacity, southern China: Spatioseasonal variations, sources, and influencing factors Полный текст
2021
Zeng, Yuan | Chen, She-Jun | Liang, Yao-Hui | Zhu, Chun-You | Liu, Zheng | Guan, Yu-Feng | Ma, Hui-Min | Mai, Bi-Xian
Organophosphate esters (OPEs) are ubiquitous contaminants in the environment, whereas their atmospheric processes and fate are poorly understood. The present study revealed the spatial heterogeneity and seasonal variations of traditional and novel OPEs in PM₂.₅ (particulate matter with diameters < 2.5 μm) across a megacity (including residential areas and potential source sites) in South China. Potential influencing factors on the contamination levels of OPEs were addressed. The total concentrations of 11 traditional OPEs ranging from 262 to 42,194 pg/m³ (median = 1872 pg/m³) were substantially higher than those of 10 novel OPEs (33.5–3835 pg/m³, median = 318 pg/m³). Significant spatial and temporal variations in the concentrations of most OPEs were observed. The overall district-specific contamination levels in this city showed dependence on the secondary industry sector for non-predominant OPEs and on the tertiary industry for predominant OPEs. The seasonal variations of the OPE concentrations suggest difference in their sources or influence of meteorological conditions. The correlations between the individual OPEs in PM₂.₅ are determined largely by either their applications or physicochemical properties (in particular vapor pressure). The correlations between OPE concentrations and each meteorological factor (temperature, relative humidity, wind speed, and surface solar radiation) were inconsistent (positive and negative). Wind speed had the greatest effect on the OPE levels; While most OPEs bound to PM₂.₅ were not efficiently scavenged by below-cloud rainfall. The results suggest that atmospheric half-life and Henry’s Law Constant of OPEs are also determining factors for the wind speed and rainfall influence, respectively. However, mechanisms underlying the influence of meteorological conditions on atmospheric OPEs still need further research.
Показать больше [+] Меньше [-]Stronger secondary pollution processes despite decrease in gaseous precursors: A comparative analysis of summer 2020 and 2019 in Beijing Полный текст
2021
To control the spread of COVID-19, China implemented a series of lockdowns, limiting various offline interactions. This provided an opportunity to study the response of air quality to emissions control. By comparing the characteristics of pollution in the summers of 2019 and 2020, we found a significant decrease in gaseous pollutants in 2020. However, particle pollution in the summer of 2020 was more severe; PM₂.₅ levels increased from 35.8 to 44.7 μg m⁻³, and PM₁₀ increased from 51.4 to 69.0 μg m⁻³ from 2019 to 2020. The higher PM₁₀ was caused by two sandstorm events on May 11 and June 3, 2020, while the higher PM₂.₅ was the result of enhanced secondary formation processes indicated by the higher sulfate oxidation rate (SOR) and nitrate oxidation rate (NOR) in 2020. Higher SOR and NOR were attributed mainly to higher relative humidity and stronger oxidizing capacity. Analysis of PMₓ distribution showed that severe haze occurred when particles within Bin2 (size ranging 1–2.5 μm) dominated. SO₄²⁻₍₁/₂.₅₎ and SO₄²⁻₍₂.₅/₁₀₎ remained stable under different periods at 0.5 and 0.8, respectively, indicating that SO₄²⁻ existed mainly in smaller particles. Decreases in NO₃⁻₍₁/₂.₅₎ and increases in NO₃⁻₍₂.₅/₁₀₎ from clean to polluted conditions, similar to the variations in PMₓ distribution, suggest that NO₃⁻ played a role in the worsening of pollution. O₃ concentrations were higher in 2020 (108.6 μg m⁻³) than in 2019 (96.8 μg m⁻³). Marked decreases in fresh NO alleviated the titration of O₃. Furthermore, the oxidation reaction of NO₂ that produces NO₃⁻ was dominant over the photochemical reaction of NO₂ that produces O₃, making NO₂ less important for O₃ pollution. In comparison, a lower VOC/NOₓ ratio (less than 10) meant that Beijing is a VOC-limited area; this indicates that in order to alleviate O₃ pollution in Beijing, emissions of VOCs should be controlled.
Показать больше [+] Меньше [-]Effects of air quality and vegetation on algal bloom early warning systems in large lakes in the middle–lower Yangtze River basin Полный текст
2021
Zhang, Chengxiang | Pei, Hongcui | Jia, Yifei | Bi, Yeliang | Lei, Guangchun
Studies of algal bloom early warning systems have rarely paid attention to the dynamics of excessive proliferation of phytoplankton (EPP), which occurs prior to algal blooms, or to the sensitivity of a lake to EPP based on multiple environmental factors. In this study, we investigated EPP dynamics in large lakes and identified major factors that influenced the lake's vulnerability to EPP, to improve algal bloom early warning systems. High temporal moderate resolution imaging spectroradiometer (MODIS) images and multi-source daily site monitoring data of large lakes in the middle–lower Yangtze River basin were analyzed. Then, the floating algal index (FAI) and resource use efficiency (RUE) by phytoplankton were used to investigate the EPP dynamics and lake's vulnerability to EPP, respectively. Moreover, generalized linear models were used to assess the relative importance of environmental factors on RUE. The results indicate that the lakes freely connected (FC) to the Yangtze River (Dongting Lake and Poyang Lake) had lower FAIs but higher RUEs than the non-connected lakes (NC; Chaohu Lake and Taihu Lake). The key factors affecting RUE-FC were standard deviation of water level within 30 days(WL30), particulate matter <10 μm(PM₁₀), and relative humidity(Hum), which explained 15.91% of the variations in RUE. The key factors affecting RUE-NC were ozone(O₃), basin normalized difference vegetation index standard deviation(BNDVISD), and dissolved oxygen(DO), which explained 35.28% of the variations in RUE. These results emphasize the importance of air quality in influencing or reflecting EPP risks in large lakes. In addition, basin vegetation and hydrological rhythms can influence NH₄⁺ through non-point source loading. Algal bloom early warning systems can be improved by routine monitoring and forecasting of potential environmental factors such as air quality and basin vegetation.
Показать больше [+] Меньше [-]Heterogeneous photochemical uptake of NO2 on the soil surface as an important ground-level HONO source Полный текст
2021
Yang, Wangjin | Han, Chŏng | Zhang, Tingting | Tang, Ning | Yang, He | Xue, Xiangxin
Nitrous acid (HONO) production from the heterogeneous photochemical reaction of NO₂ on several Chinese soils was performed in a cylindrical reactor at atmospheric pressure. The NO₂ uptake coefficient (γ) and HONO yield (YHONO) on different soils were (0.42–5.16) × 10⁻⁵ and 6.3%–69.6%, respectively. Although the photo-enhanced uptake of NO₂ on different soils was observed, light could either enhance or inhibit the conversion efficiency of NO₂ to HONO, depending on the properties of the soils. Soils with lower pH generally had larger γ and YHONO. Soil organics played a key role in HONO formation through the photochemical uptake of NO₂ on soil surfaces. The γ showed a positive correlation with irradiation and temperature, while it exhibited a negative relationship with relative humidity (RH). YHONO inversely depended on the soil mass (0.32–3.25 mg cm⁻²), and it positively relied on the irradiance and RH (7%–22%). There was a maximum value for YHONO at 298 K. Based on the experimental results, HONO source strengths from heterogeneous photochemical reaction of NO₂ on the soil surfaces were estimated to be 0.2–2.7 ppb h⁻¹ for a mixing layer height of 100 m, which could account for the missing daytime HONO sources in most areas.
Показать больше [+] Меньше [-]Exploring common factors influencing PM2.5 and O3 concentrations in the Pearl River Delta: Tradeoffs and synergies Полный текст
2021
Wu, Jiansheng | Wang, Yuan | Liang, Jingtian | Yao, Fei
Particulate matter with an aerodynamic equivalent dimeter less than 2.5 μm (PM₂.₅) and ozone (O₃) are major air pollutants, with coupled and complex relationships. The control of both PM₂.₅ and O₃ pollution requires the identification of their common influencing factors, which has rarely been attempted. In this study, land use regression (LUR) models based on the least absolute shrinkage and selection operator were developed to estimate PM₂.₅ and O₃ concentrations in China's Pearl River Delta region during 2019. The common factors in the tradeoffs between the two air pollutants and their synergistic effects were analyzed. The model inputs included spatial coordinates, remote sensing observations, meteorological conditions, population density, road density, land cover, and landscape metrics. The LUR models performed well, capturing 54–89% and 42–83% of the variations in annual and seasonal PM₂.₅ and O₃ concentrations, respectively, as shown by the 10-fold cross validation. The overlap of variables between the PM₂.₅ and O₃ models indicated that longitude, aerosol optical depth, O₃ column number density, tropospheric NO₂ column number density, relative humidity, sunshine duration, population density, the percentage cover of forest, grass, impervious surfaces, and bare land, and perimeter-area fractal dimension had opposing effects on PM₂.₅ and O₃. The tropospheric formaldehyde column number density, wind speed, road density, and area-weighted mean fractal dimension index had complementary effects on PM₂.₅ and O₃ concentrations. This study has improved our understanding of the tradeoff and synergistic factors involved in PM₂.₅ and O₃ pollution, and the results can be used to develop joint control policies for both pollutants.
Показать больше [+] Меньше [-]Insights into chemical composition, abatement mechanisms and regional transport of atmospheric pollutants in the Yangtze River Delta region, China during the COVID-19 outbreak control period Полный текст
2020
Jia, Haohao | Huo, Juntao | Fu, Qingyan | Duan, Yusen | Lin, Yanfen | Jin, Xiaodan | Hu, Xue | Cheng Jinping,
To investigate chemical characteristics, abatement mechanisms and regional transport of atmospheric pollutants during the COVID-19 outbreak control period in the Yangtze River Delta (YRD) region, China, the measurements of air pollutants including fine particulate matter (PM₂.₅) and volatile organic compounds (VOCs) on non-control period (NCP, 24 December 2019–23 January 2020) and control period (CP, 24 January–23 February 2020) were analyzed at the urban Pudong Supersite (PD) and the regional Dianshan Lake Supersite (DSL). Due to the stricter outbreak control, the levels of PM₂.₅ and VOCs, and the occurrence frequencies of haze-fog episodes decreased substantially from NCP to CP, with average reduction rates of 31.6%, 38.9% and 35.1% at PD, and 34.5%, 50.7% and 37.9% at DSL, respectively. The major source for PM₂.₅ was secondary sulfate & nitrate in both periods, and the emission control of primary sources such as coal burning and vehicle exhaust decreased the levels of precursors gas sulfur dioxide and nitrogen oxide, which highly contributed to the abatement of PM₂.₅ from NCP to CP. The higher levels of ozone at both PD and DSL on CP might be due to the weak nitrogen monoxide titration, low relative humidity and high visibility compared with NCP. Vehicle exhaust and fugitive emission from petrochemical industry were the major contributors of ambient VOCs and their decreasing activities mainly accounted for VOCs abatement. Moreover, the high frequency of haze-fog events was closely impacted by medium-scale regional transport within Anhui and Jiangsu provinces. Therefore, the decreasing regional transported air pollutants coincided with the emission control of local sources to cause the abatement of haze-fog events in YRD region on CP. This study could improve the understanding of the change of atmospheric pollutants during the outbreak control period, and provide scientific base for haze-fog pollution control in YRD region, China.
Показать больше [+] Меньше [-]