Уточнить поиск
Результаты 1-10 из 412
RHIZOtest: A plant-based biotest to account for rhizosphere processes when assessing copper bioavailability
2010
Bravin M. | Michaud A.M. | Larabi B. | Hinsinger P.
The ability of the free ion activity model (FIAM), the terrestrial biotic ligand model (TBLM), the diffusive gradients in thin films (DGT) technique and a plant-based biotest, the RHIZOtest, to predict root copper (Cu) concentration in field-grown durum wheat (Triticum turgidum durum L.) was assessed on 44 soils varying in pH (3.9e7.8) and total Cu (32e184 mg kg_1). None of the methods adequately predicted root Cu concentration, which was mainly correlated with total soil Cu. Results from DGT measurements and even more so FIAM prediction were negatively correlated with soil pH and over-estimated root Cu concentration in acidic soils. TBLM implementation improved numerically FIAM prediction but still failed to predict adequately root Cu concentration as the TBLM formalism did not considered the rhizosphere alkalisation as observed in situ. In contrast, RHIZOtest measurements accounted for rhizosphere alkalisation and were mainly correlated with total soil Cu. (Résumé d'auteur)
Показать больше [+] Меньше [-]Effects of elevated CO2 and O3 on silver birch rhizosphere and leaf litter decomposition
2002
Kasurinen, A. (University of Kuopio, Kuopio (Finland). Department of Ecology and Environmental Science) | Vapaavuori, E. | Holopainen, J. K. | Holopainen, T.
There is still limited amount of information about the long-term and interactive effects of increased CO2 and O3 levels on larger forest trees growing under natural or semi-natural conditions. Elevated CO2 and O3 might affect the quality and quantity of leaf litter produced and thus change litter decomposition rates and nutrient cycling in the forest ecosystems severely. In this long-term field experiment we studied the effects of realistically increased CO2 and O3 levels on fine root and mycorrhiza growth in ozone-tolerant and ozone-sensitive silver birch clones by root ingrowth core method. We measured rhizosphere soil CO2 efflux plus assessed the total fungal biomass of fine roots and soil by ergosterol analysis
Показать больше [+] Меньше [-]Advantages and limits to copper phytoextraction in vineyards
2022
Cornu, Jean-Yves | Waterlot, Christophe | Lebeau, Thierry | Interactions Sol Plante Atmosphère (UMR ISPA) ; Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Laboratoire de Génie Civil et Géo-Environnement (LGCgE) - ULR 4515 (LGCgE) ; Université d'Artois (UA)-Université de Lille-Ecole nationale supérieure Mines-Télécom Lille Douai (IMT Lille Douai) ; Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-JUNIA (JUNIA) ; Université catholique de Lille (UCL)-Université catholique de Lille (UCL) | Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG) ; Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST) ; Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
International audience | Copper (Cu) contamination of soils may alter the functioning and sustainability of vineyard ecosystems. Cultivating Cu-extracting plants in vineyard inter-rows, or phytoextraction, is one possible way currently under consideration in agroecology to reduce Cu contamination of vineyard topsoils. This option is rarely used, mainly because Cu phytoextraction yields are too low to significantly reduce contamination due to the relatively "low" phytoavailability of Cu in the soil (compared to other trace metals) and its preferential accumulation in the roots of most extracting plants. This article describes the main practices and associated constraints that could theoretically be used to maximize Cu phytoextraction at field scale, including the use of Cu-accumulating plants grown (i) with acidifying plants (e.g., leguminous plants), and/or (ii) in the presence of acidifying fertilizers (ammonium, elemental sulfur), or (iii) with soluble "biochelators" added to the soil such as natural humic substances or metabolites produced by rhizospheric bacteria such as siderophores, in the inter-rows. This discussion article also provides an overview of the possible ways to exploit Cu-enriched biomass, notably through ecocatalysis or biofortification of animal feed.
Показать больше [+] Меньше [-]Plant-derived saponin enhances biodegradation of petroleum hydrocarbons in the rhizosphere of native wild plants
2022
Hoang, Son A. | Lamb, Dane | Sarkar, Binoy | Seshadri, Balaji | Lam, Su Shiung | Vinu, Ajayan | Bolan, Nanthi S.
Plant-derived saponins are bioactive surfactant compounds that can solubilize organic pollutants in environmental matrices, thereby facilitating pollutant remediation. Externally applied saponin has potential to enhance total petroleum hydrocarbon (TPH) biodegradation in the root zone (rhizosphere) of wild plants, but the associated mechanisms are not well understood. For the first time, this study evaluated a triterpenoid saponin (from red ash leaves, Alphitonia excelsa) in comparison to a synthetic surfactant (Triton X-100) for their effects on plant growth and biodegradation of TPH in the rhizosphere of two native wild species (a grass, Chloris truncata, and a shrub, Hakea prostrata). The addition of Triton X-100 at the highest level (1000 mg/kg) in the polluted soil significantly hindered the plant growth (reduced plant biomass and photosynthesis) and associated rhizosphere microbial activity in both the studied plants. Therefore, TPH removal in the rhizosphere of both plant species treated with the synthetic surfactant was not enhanced (at the lower level, 500 mg/kg soil) and even slightly decreased (at the highest level) compared to that in the surfactant-free (control) treatment. By contrast, TPH removal was significantly increased with saponin application (up to 60% in C. truncata at 1000 mg/kg due to enhanced plant growth and associated rhizosphere microbial activity). No significant difference was observed between the two saponin application levels. Dehydrogenase activity positively correlated with TPH removal (p < 0.001) and thus this parameter could be used as an indicator to predict the rhizoremediation efficiency. This work indicates that saponin-amended rhizoremediation could be an environmentally friendly and effective biological approach to remediate TPH-polluted soils. It was clear that the enhanced plant growth and rhizosphere microbial activity played a crucial role in TPH rhizoremediation efficiency. The saponin-induced molecular processes that promoted plant growth and soil microbial activity in the rhizosphere warrant further studies.
Показать больше [+] Меньше [-]Combined effects of degradable film fragments and micro/nanoplastics on growth of wheat seedling and rhizosphere microbes
2022
Ren, Xinwei | Wang, Lan | Tang, Jingchun | Sun, Hongwen | Giesy, John P.
Multiple sources of microplastics (MPs) in farmland could result in the changing of microbial community and the plant growth. Most studies of MPs in agricultural system have focused on the effects of single types of MPs on growth of plants, while neglect interactions between multiple types of MPs. In this study a pot-experiment was conducted to investigate the effects of multiple types of MPs, including polystyrene beads: M1, 5 μm, M2, 70 nm and degradable mulching film (DMF) fragments on growth of wheat seedlings and associated rhizosphere microbial community. CKD (adding DMF) significantly reduced plant height and base diameter of wheat seedlings. DMF in combination with M2, significantly increased plant height and aboveground biomass, but decreased the base diameter. Actinobacteria was the dominant taxa in the rhizosphere bacterial community in various treatments. PCoA analysis showed that the bacterial composition in M2HD (100 mg kg⁻¹ M² with DMF) was significantly different from that of CKD and M2LD (10 mg kg⁻¹ M² with DMF). At the level of genera, the dominant fungi in CKD and M2LD were in the genus Fusarium, which is the cause of wheat fusarium blight and Alternaria, which results in decreased base diameter. In CK (control group) and M2HD, Blastobotrys exhibited the greatest abundance, which assisted wheat seedlings in resisting Verticillium disease. Cluster and PCoA analysis showed the fungal composition in CKD was significantly different from CK, M2LD and M2HD. These findings suggest MPs potentially have selective effects on pathogens that affect growth of plants and potentially safety of the food.
Показать больше [+] Меньше [-]Microbial metabolic limitation of rhizosphere under heavy metal stress: Evidence from soil ecoenzymatic stoichiometry
2022
Duan, Chengjiao | Wang, Yuhan | Wang, Qiang | Ju, Wenliang | Zhang, Zhiqin | Cui, Yongxing | Beiyuan, Jingzi | Fan, Qiaohui | Wei, Shiyong | Li, Shiqing | Fang, Linchuan
Slow nutrient turnover and destructed soil function were the main factors causing low efficiency in phytoremediation of heavy metal (HM)-contaminated soil. Soil ecoenzymatic stoichiometry can reflect the ability of soil microorganisms to acquire energy and nutrients, and drive nutrient cycling and carbon (C) decomposition in HM-contaminated soil. Therefore, for the first time, we used the enzymatic stoichiometry modeling to examine the microbial nutrient limitation in rhizospheric and bulk soil of different plants (Medicago sativa, Halogeton arachnoideus and Agropyron cristatum) near the Baiyin Copper Mine. Results showed that the main pollutants in this area were Cu, Zn, Cd, and Pb, while Cd and Zn have the greatest contribution according to the analysis of pollution load index (PLI). The activities of soil C-, nitrogen (N)-, and phosphorus (P)-acquiring enzymes in the rhizosphere of plants were significantly greater than that in bulk soil. Moreover, microbial C and P limitations were observed in all plant treatments, while the lower limitation was generally in the rhizosphere compared to bulk soil. The HM stress significantly increased microbial C limitation and decreased microbial P limitation, especially in the rhizospheric soil. The partial least squares path modeling (PLS-PM) further indicated that HM concentration has the greatest effects on microbial P limitation (−0.64). In addition, the highest enzyme activities and the lowest P limitation were observed in the rhizospheric and bulk soil of M. sativa, thereby implying that soil microbial communities under the remediation of M. sativa were steadier and more efficient in terms of their metabolism. These findings are important for the elucidation of the nutrient cycling and microbial metabolism of rhizosphere under phytoremediation, and provide guidance for the restoration of HM-contaminated soil.
Показать больше [+] Меньше [-]Wood vinegar facilitated growth and Cd/Zn phytoextraction of Sedum alfredii Hance by improving rhizosphere chemical properties and regulating bacterial community
2022
Zhou, Xueqi | Shi, An | Rensing, Christopher | Yang, Jing | Ni, Wuzhong | Xing, Shihe | Yang, Wenhao
Soil Cd and Zn contamination has become a serious environmental problem. This work explored the performance of wood vinegar (WV) in enhancing the phytoextraction of Cd/Zn by hyperaccumulator Sedum alfredii Hance. Rhizosphere chemical properties, enzyme activities and bacterial community were analyzed to determine the mechanisms of metal accumulation in this process. Results demonstrated that, after 120 days growth, different times dilution of WV increased the shoot biomass of S. alfredii by 85.2%–148%. In addition, WV application significantly increased soil available Cd and Zn by lowing soil pH, which facilitated plant uptake. The optimal Cd and Zn phytoextraction occurred from the 100 times diluted WV (D100), which increased the Cd and Zn extraction by 188% and 164%, compared to CK. The 100 and 50 times diluted WV significantly increased soil total and available carbon, nitrogen and phosphorus, and enhancing enzyme activities of urease, acid phosphatase, invertase and protease by 10.1–21.4%, 29.1–42.7%,12.2–38.3% and 26.8–85.7%, respectively, compared to CK. High-throughput sequencing revealed that the D 100 significantly increased the bacterial diversity compared to CK. Soil bacterial compositions at phylum, family and genera level were changed by WV addition. Compared to CK, WV application increased the relative abundances of genus with plant growth promotion and metal mobilization function such as, Bacillus, Gemmatimonas, Streptomyces, Sphingomonas and Polycyclovorans, which was positively correlated to biomass, Cd/Zn concentrations and extractions by S. alfredii. Structural equation modeling analysis showed that, soil chemical properties, enzyme activities and bacterial abundance directly or indirectly contributed to the biomass promotion, Cd, and Zn extraction by S. alfredii. To sum up, WV improved phytoextraction efficiency by enhancing plant growth, Cd and Zn extraction and increasing soil nutrients, enzyme activities, and modifying bacterial community.
Показать больше [+] Меньше [-]Use of artificial neural network to evaluate cadmium contamination in farmland soils in a karst area with naturally high background values
2022
Li, Cheng | Zhang, Chaosheng | Yu, Tao | Liu, Xu | Yang, Yeyu | Hou, Qingye | Yang, Zhongfang | Ma, Xudong | Wang, Lei
In recent years, the naturally high background value region of Cd derived from the weathering of carbonate has received wide attention. Due to the significant difference in soil Cd content and bioavailability among different parent materials, the previous land classification scheme based on total soil Cd content as the classification standard, has certain shortcomings. This study aims to explore the factors influencing soil Cd bioavailability in typical karst areas of Guilin and to suggest a scientific and effective farmland use management plan based on the prediction model. A total of 9393 and 8883 topsoil samples were collected from karst and non-karst areas, respectively. Meanwhile, 149 and 145 rice samples were collected together with rhizosphere soil in karst and non-karst areas, respectively. The results showed that the higher CaO level in the karst area was a key factor leading to elevated soil pH value. Although Cd was highly enriched in karst soils, the higher pH value and adsorption of Mn oxidation inhibited Cd mobility in soils. Conversely, the Cd content in non-karst soils was lower, whereas the Cd level in rice grains was higher. To select the optimal prediction model based on the correlation between Cd bioaccumulation factors and geochemical parameters of soil, artificial neural network (ANN) and linear regression prediction models were established in this study. The ANN prediction model was more accurate than the traditional linear regression model according to the evaluation parameters of the test set. Furthermore, a new land classification scheme based on an ANN prediction model and soil Cd concentration is proposed in this study, making full use of the spatial resources of farmland to ensure safe rice consumption.
Показать больше [+] Меньше [-]Nano-enabled improvements of growth and colonization rate in wheat inoculated with arbuscular mycorrhizal fungi
2022
Naseer, Minha | Zhu, Ying | Li, Fengmin | Yang, Yu-Miao | Wang, Song | Xiong, You-Cai
Arbuscular mycorrhizal fungi display desired potential to boost crop productivity and drought acclimation. Yet, whether nanoparticles can be incorporated into arbuscular mycorrhizal fungi for better improvement and its relevant morphologic and anatomical evidences are little documented. Pot culture experiment on wheat (Triticum aestivum L.) was conducted under drought stress (30% FWC) as well as well watered conditions (80% FWC) that involved priming of wheat seeds with iron nanoparticles at different concentrations (5mg L⁻¹, 10 mg L⁻¹ and 15 mg L⁻¹) with and without the inoculation of Glomus intraradices. The effects of treatments were observed on morphological and physiological parameters across jointing, anthesis and maturity stage. Root colonization and nanoparticle uptake trend by seeds and roots was also recorded. We observed strikingly high enhancement in biomass up to 109% under drought and 71% under well-watered conditions, and grain yield increased to 163% under drought and 60% under well-watered conditions. Iron nanoparticles at 10 mg L⁻¹ when combined with Glomus intraradices resulted in maximum wheat growth and yield, which mechanically resulted from higher rhizosphere colonization level, water use efficiency and photosynthetic rate under drought stress (P < 0.01). Across growth stages, optical micrograph observations affirmed higher root infection rate when combined with nanoparticles. Transmission electron microscopy indicated the penetration of nanoparticles into the seeds and translocation across roots whereas energy dispersive X-ray analyses further confirmed the presence of Fe in these organs. Iron nanoparticles significantly enhanced the growth-promoting and drought-tolerant effects of Glomus intraradices on wheat.
Показать больше [+] Меньше [-]Foliar application of lambda-cyhalothrin modulates root exudate profile and the rhizosphere bacteria community of dioecious Populus cathayana
2022
He, Yue | Zhu, Zuodong | Zhou, Zhenghu | Lu, Tao | Kumar, Amit | Xia, Zhichao
Dioecious plants show sexual differences in resistance traits to abiotic stresses. However, the effects of exogenous pesticide application on female and male plant growth and their associated adaptation mechanisms are unclear. Our study investigated the effects of the broad-spectrum pesticide lambda-cyhalothrin (λ-CY) on dioecious Populus cathayana growth and explored the factors through which λ-CY changed the rhizosphere bacterial community and physicochemical soil properties via sex-specific metabolomics. The sequential application of λ-CY significantly suppressed male shoot- and root biomass, with little effect on the growth of females. Females possessed a higher intrinsic chemo-diversity within their root exudates, and their levels of various metabolites (sugars, fatty acids, and small organic acids) increased after exposure to λ-CY with consequences on bacterial community composition. Maintaining high bacterial alpha diversity and recruiting specific bacterial groups slowed down the loss of rhizosphere nutrients in females. In contrast, the reduction in bacterial alpha diversity and network structure stability in males was associated with lower rhizosphere nutrient availability. Spearman's correlation analysis revealed that several bacterial groups were positively correlated with the root secretion of lipids and organic acids, suggesting that these metabolites can affect the soil bacterial groups actively involved in the nutrient pool. This study provided novel insights that root exudates and soil microbial interactions may mediate sex-specific differences in response to pesticide application.
Показать больше [+] Меньше [-]